Maria LaBouyer, Grietje Holtrop, Graham Horgan, Silvia W Gratz, Alvaro Belenguer, Nicola Smith, Alan W Walker, Sylvia H Duncan, Alexandra M Johnstone, Petra Louis, Harry J Flint, Karen P Scott
{"title":"Higher total faecal short-chain fatty acid concentrations correlate with increasing proportions of butyrate and decreasing proportions of branched-chain fatty acids across multiple human studies.","authors":"Maria LaBouyer, Grietje Holtrop, Graham Horgan, Silvia W Gratz, Alvaro Belenguer, Nicola Smith, Alan W Walker, Sylvia H Duncan, Alexandra M Johnstone, Petra Louis, Harry J Flint, Karen P Scott","doi":"10.1017/gmb.2022.1","DOIUrl":"10.1017/gmb.2022.1","url":null,"abstract":"<p><p>Metabolites produced by microbial fermentation in the human intestine, especially short-chain fatty acids (SCFAs), are known to play important roles in colonic and systemic health. Our aim here was to advance our understanding of how and why their concentrations and proportions vary between individuals. We have analysed faecal concentrations of microbial fermentation acids from 10 human volunteer studies, involving 163 subjects, conducted at the Rowett Institute, Aberdeen, UK over a 7-year period. In baseline samples, the % butyrate was significantly higher, whilst % iso-butyrate and % iso-valerate were significantly lower, with increasing total SCFA concentration. The decreasing proportions of iso-butyrate and iso-valerate, derived from amino acid fermentation, suggest that fibre intake was mainly responsible for increased SCFA concentrations. We propose that the increase in % butyrate among faecal SCFA is largely driven by a decrease in colonic pH resulting from higher SCFA concentrations. Consistent with this, both total SCFA and % butyrate increased significantly with decreasing pH across five studies for which faecal pH measurements were available. Colonic pH influences butyrate production through altering the stoichiometry of butyrate formation by butyrate-producing species, resulting in increased acetate uptake and butyrate formation, and facilitating increased relative abundance of butyrate-producing species (notably <i>Roseburia</i> and <i>Eubacterium rectale</i>).</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":" ","pages":"e2"},"PeriodicalIF":0.0,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45872434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alaa Bawaneh, Carol A Shively, Janet Austin Tooze, Katherine Loree Cook
{"title":"Impact of gut permeability on the breast microbiome using a non-human primate model.","authors":"Alaa Bawaneh, Carol A Shively, Janet Austin Tooze, Katherine Loree Cook","doi":"10.1017/gmb.2022.9","DOIUrl":"https://doi.org/10.1017/gmb.2022.9","url":null,"abstract":"<p><p>We previously demonstrated in non-human primates (NHP) that Mediterranean diet consumption shifted the proportional abundance of <i>Lactobacillus</i> in the breast and gut. This data highlights a potential link about gut-breast microbiome interconnectivity. To address this question, we compared bacterial populations identified in matched breast and faecal samples from our NHP study. Dietary pattern concurrently shifted two species in both regions; <i>Streptococcus lutetiensis and Ruminococcus torques</i>. While we observe similar trends in <i>Lactobacillus</i> abundances in the breast and gut, the species identified in each region vary; Mediterranean diet increased <i>Lactobacillus_unspecified species</i> in breast but regulated <i>L. animalis</i> and <i>L. reuteri</i> in the gut.We also investigated the impact of gut permeability on the breast microbiome. Regardless of dietary pattern, subjects that displayed increased physiological measures of gut permeability (elevated plasma lipopolysaccharide, decreased villi length, and decreased goblet cells) displayed a significantly different breast microbiome. Gut barrier dysfunction was associated with increased α-diversity and significant different β-diversity in the breast tissue. Taken together our data supports the presence of a breast microbiome influenced by diet that largely varies from the gut microbiome population but is, however, sensitive to gut permeability.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"3 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990890/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9090006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Débora Campos, Ricardo Goméz-García, Diana Oliveira, Ana Raquel Madureira
{"title":"Intake of nanoparticles and impact on gut microbiota: <i>in vitro</i> and animal models available for testing.","authors":"Débora Campos, Ricardo Goméz-García, Diana Oliveira, Ana Raquel Madureira","doi":"10.1017/gmb.2021.5","DOIUrl":"10.1017/gmb.2021.5","url":null,"abstract":"<p><p>The oral delivery of compounds associated with diet or medication have an impact on the gut microbiota balance, which in turn, influences the physiologic process. Several reports have shown significant advances in clarifying the impact, interactions and outcomes of oral intake of nanoparticles and the human gut. These interactions may affect the bioavailability of the delivered compounds. In addition, there is a considerable breakthrough in the development of antimicrobial nanoparticles for intestinal pathogenic bacteria. Several <i>in vitro</i> fermentation and <i>in vivo</i> models have been developed throughout the years and were used to test these systems. The methodologies and studies carried out so far on the modulation of human and animal gut microbiome by oral delivery nanosized materials were reviewed. Overall, the available <i>in vitro</i> studies mimic the real physiological events enabling to select the best production conditions of nanoparticulate systems in a preliminary stage of research. On the other hand, animal studies can be used to access the dosage effect, safety and correlation between haematological, biochemical and symptoms, with gut microbiota groups and metabolites.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"3 1","pages":"e1"},"PeriodicalIF":0.0,"publicationDate":"2021-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406378/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47034389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conference report: the importance of the gut microbiome and nutrition on health.","authors":"Derek Ball, Spiridoula Athanasiadou","doi":"10.1017/gmb.2021.4","DOIUrl":"10.1017/gmb.2021.4","url":null,"abstract":"<p><p>The Nutrition Society Spring Conference (28-29 March 2021) focussed on the gut microbiome and health that was divided across three separate but inter-related areas from the impact of nutrition on the gut microbiome, the cause and effect of nutrition and health on the gut microbiome to the interaction between pathogens and gut microbiota. The program was supported by two plenary lectures, the first discussed the computational methods commonly employed to examine gut microbiota and the concluding lecture presented the interaction between gut microbiome, nutrition and health in older populations.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":" ","pages":"e4"},"PeriodicalIF":0.0,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406383/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48356903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dietary fibre and the gut-brain axis: microbiota-dependent and independent mechanisms of action.","authors":"Danique La Torre, Kristin Verbeke, Boushra Dalile","doi":"10.1017/gmb.2021.3","DOIUrl":"10.1017/gmb.2021.3","url":null,"abstract":"<p><p>Dietary fibre is an umbrella term comprising various types of carbohydrate polymers that cannot be digested nor absorbed by the human small intestine. Consumption of dietary fibre is linked to beneficial effects on cognitive and affective processes, although not all fibres produce the same effects. Fibres that increase short-chain fatty acid (SCFA) production following modulation of the gut microbiota are thought to be the most potent fibres to induce effects on cognitive and affective processes. SCFAs can exert their effects by improving central, peripheral and systemic immunity, lowering hypertension and enhancing intestinal barrier integrity. Here, we propose additional mechanisms by which dietary fibres may contribute to improvements in affective and cognitive processes. Fibre-induced modulation of the gut microbiota may influence affective processes and cognition by increasing brain-derived neurotrophic factor levels. Depending on the physicochemical properties of dietary fibre, additional effects on affect and cognition may occur via non-microbiota-related routes, such as enhancement of the immune system and lowering cholesterol levels and subsequently lowering blood pressure. Mechanistic randomised placebo-controlled trials are needed to establish the effects of dietary fibre consumption and the magnitude of explained variance in affect and cognition when incorporating measurements of microbiota-dependent and microbiota-independent mechanisms in humans.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"2 1","pages":"e3"},"PeriodicalIF":0.0,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406392/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45714894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jessica A Davis, Fiona Collier, Mohammadreza Mohebbi, Julie A Pasco, Nitin Shivappa, James R Hébert, Felice N Jacka, Amy Loughman
{"title":"The associations of butyrate-producing bacteria of the gut microbiome with diet quality and muscle health.","authors":"Jessica A Davis, Fiona Collier, Mohammadreza Mohebbi, Julie A Pasco, Nitin Shivappa, James R Hébert, Felice N Jacka, Amy Loughman","doi":"10.1017/gmb.2021.2","DOIUrl":"10.1017/gmb.2021.2","url":null,"abstract":"<p><p>This study aimed to investigate the relationships between diet quality, the relative abundance of butyrate-producing bacteria of the gut microbiome and muscle mass, strength and function. In this cross-sectional study, <i>n</i> = 490 men (64.4 ± 13.5 years) from the Geelong Osteoporosis Study provided food frequency questionnaire data, from which the Australian Recommended Food Score (ARFS) and Dietary Inflammatory Index (DII) score were calculated. Muscle mass (skeletal muscle index from DXA-derived lean mass), muscle strength (handgrip strength) and muscle function (Timed Up-and-Go test) were measured. Participants provided stool samples for 16S rRNA gene sequencing. There was no evidence of associations between alpha or beta diversity and muscle health measures. A healthier ARFS score was positively associated with the relative abundance of butyrate-producing bacteria (<i>β</i> 0.09, 95%CI 0.03, 0.15) and a higher (pro-inflammatory) DII score was associated with lower relative abundance of butyrate-producing bacteria (<i>β</i> -0.60, 95%CI -1.06, -0.15). The relative abundance of butyrate-producing bacteria was positively associated with healthier muscle mass, strength and function; however, these relationships were attenuated in multivariable models. These findings support the role of diet quality in achieving a healthier gut microbiome, however, further evidence is required for a gut-muscle axis in humans.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":" ","pages":"e2"},"PeriodicalIF":0.0,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406371/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46008115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diana P Brostow, Christopher E Stamper, Maggie A Stanislawski, Kelly A Stearns-Yoder, Alexandra Schneider, Teodor T Postolache, Jeri E Forster, Andrew J Hoisington, Christopher A Lowry, Lisa A Brenner
{"title":"Dietary habits and the gut microbiota in military Veterans: results from the United States-Veteran Microbiome Project (US-VMP).","authors":"Diana P Brostow, Christopher E Stamper, Maggie A Stanislawski, Kelly A Stearns-Yoder, Alexandra Schneider, Teodor T Postolache, Jeri E Forster, Andrew J Hoisington, Christopher A Lowry, Lisa A Brenner","doi":"10.1017/gmb.2021.1","DOIUrl":"10.1017/gmb.2021.1","url":null,"abstract":"<p><p>Dietary patterns influence gut microbiota composition. To date, there has not been an assessment of diet and gut microbiota in Veterans, who have a history of unique environmental exposures, including military deployment, that may influence associations between diet and gut microbiota. Our aim was to characterise Veteran habitual dietary intake and quality, and to evaluate correlations between diet and gut microbiota. We administered Food Frequency Questionnaires (FFQs) and collected stool samples from 330 Veterans. FFQ data were used to generate Healthy Eating Indices (HEI) of dietary quality. Exploratory factor analysis was used to identify two dietary patterns we defined as \"Western\" and \"Prudent.\" Stool samples underwent 16S rRNA gene sequencing, and the resulting data were used to evaluate associations with dietary variables/indices. Analyses included linear regression of α-diversity, constrained analysis of principal coordinates of β-diversity, and multivariate association with linear models and Analysis of Composition of Microbiomes analyses of dietary factors and phylum- and genus-level taxa. There were no significant associations between dietary patterns or factors and α- or β-diversity. At the phylum level, increasing HEI scores were inversely associated with relative abundance of Actinobacteria, and added sugar was inversely associated with abundance of Verrucomicrobia. Veterans largely consumed a Western-style diet, characterised by poor adherence to nutritional guidelines.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":" ","pages":"e1"},"PeriodicalIF":0.0,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406408/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45869631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alan J Marsh, Al-Mounawara A Yaya, Sandy Ng, Kshipra Chandrashekhar, Jeff Roach, Scott T Magness, M Andrea Azcarate-Peril
{"title":"Lumen and mucosa-associated <i>Lactobacillus rhamnosus</i> from the intestinal tract of organ donors.","authors":"Alan J Marsh, Al-Mounawara A Yaya, Sandy Ng, Kshipra Chandrashekhar, Jeff Roach, Scott T Magness, M Andrea Azcarate-Peril","doi":"10.1017/gmb.2020.4","DOIUrl":"10.1017/gmb.2020.4","url":null,"abstract":"<p><p>Knowledge of the intra-individual spatial and regional distribution of intestinal microbial populations is essential to understand gut host-microbial interactions. In this study, we performed a compositional analysis of luminal and mucosal samples from the small and large intestine of four organ donors by 16S rRNA amplicon sequencing and high-throughput quantitative polymerase chain reaction. Since the human microbiota is subject to selection pressure at lower taxonomic levels, we isolated over 400 bacterial strains and investigated strain-level variation of 11 <i>Lactobacillus rhamnosus</i> from different intestinal regions. Results substantiate reported inter-individual variability as well as intra-individual differences along the gastrointestinal tract. Although the luminal and mucosal-associated communities were similar within individuals, relative abundance reflected the donors' demographic and potential pathologies. The total bacterial load of all donors increased from small intestine to colon, while <i>Bifidobacterium</i> was in greater abundance in the small intestine. Comparative genomic analysis of <i>L. rhamnosus</i> showed the strains segregated into two distinct clusters and identified no features specific to location. Analysis revealed genetic differences for exopolysaccharide production, carbohydrate utilization, pilus formation and vitamin K biosynthesis between clusters. This study contributes to the understanding of niche-specific microbial communities, encouraging subsequent studies to better understand microbial signatures at lower taxonomic levels.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":" ","pages":"e4"},"PeriodicalIF":0.0,"publicationDate":"2020-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406413/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45575209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"You have the microbiome you deserve.","authors":"Colin Hill","doi":"10.1017/gmb.2020.3","DOIUrl":"10.1017/gmb.2020.3","url":null,"abstract":"<p><p>The human microbiome is one of the most exciting areas of microbiology. From a starting point of tens of papers annually a couple of decades ago, there are now thousands of papers published every year on the microbiome. Huge strides have been made in terms of defining the individual members of complex human microbiomes from different body sites. The individuality and diversity of the human microbiome almost surpasses our ability to comprehend it. Advances in metagenomics and computational sciences have increased the complexity of the field, while at the same time we have moved from regarding the human microbiome as a benign passenger to a situation where it has been linked to almost every chronic disease, including obesity, cancer and infectious disease. The microbiome tantalizes us with the promise of novel therapeutic molecules and modalities for a range of intractable diseases. And yet, very few microbiome-based therapies have made it to the clinic or the pharmacy and we still cannot really define a healthy microbiome. We are entering the most exciting phase of microbiome research, as we develop effective, evidence-based interventions to preserve and restore human health. But we need rigour and numeracy if we are to realize this vision.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"1 1","pages":"e3"},"PeriodicalIF":0.0,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406403/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42707917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}