Gut microbiome (Cambridge, England)最新文献

筛选
英文 中文
Megasphaera elsdenii, a commensal member of the gut microbiota, is associated with elevated gas production during in vitro fermentation. Megasphaera elsdenii 是肠道微生物群的共生成员,与体外发酵过程中气体产生量的增加有关。
Gut microbiome (Cambridge, England) Pub Date : 2023-12-21 eCollection Date: 2024-01-01 DOI: 10.1017/gmb.2023.18
Erasme Mutuyemungu, Hollman A Motta-Romero, Qinnan Yang, Sujun Liu, Sean Liu, Mukti Singh, Devin J Rose
{"title":"<i>Megasphaera elsdenii</i>, a commensal member of the gut microbiota, is associated with elevated gas production during <i>in vitro</i> fermentation.","authors":"Erasme Mutuyemungu, Hollman A Motta-Romero, Qinnan Yang, Sujun Liu, Sean Liu, Mukti Singh, Devin J Rose","doi":"10.1017/gmb.2023.18","DOIUrl":"https://doi.org/10.1017/gmb.2023.18","url":null,"abstract":"<p><p><i>Megasphaera elsdenii</i> has been correlated with gas production by human faecal microbiota during fermentation. The objective of this study was to determine the role of <i>M. elsdenii</i> in gas production by the microbiome. Kidney beans and sweet potatoes were subjected to <i>in vitro</i> digestion and dialysis followed by fermentation with ten faecal microbiomes: three with detectable <i>M. elsdenii</i> (Me_D) and seven with no detectable <i>M. elsdenii</i> (Me_ND). Me_D microbiomes produced more gas than the Me_ND microbiomes (<i>p</i> < 0.001). Me_D microbiomes produced more gas during fermentation of sweet potatoes than kidney beans (<i>p</i> < 0.001), while the opposite was true for the Me_ND microbiomes (<i>p</i> < 0.001). Among amplicon sequence variants that were associated with gas production, <i>M. elsdenii</i> had the strongest association (<i>p</i> < 0.001). Me_D microbiomes consumed more acetate and produced more butyrate than Me_ND microbiomes (<i>p</i> < 0.001). Gas production by <i>M. elsdenii</i> was confirmed by fermentation of sweet potatoes and acetate with human and rumen <i>M. elsdenii</i> isolates. The human isolate produced gas on sweet potatoes and acetate. This study suggests that <i>M. elsdenii</i> may be involved in gas production during the fermentation of flatulogenic foods through utilisation of undigestible substrates or cross-feeding on acetate.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406407/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen gas and the gut microbiota are potential biomarkers for the development of experimental colitis in mice 氢气和肠道微生物群是小鼠实验性结肠炎发展的潜在生物标志物
Gut microbiome (Cambridge, England) Pub Date : 2023-11-06 DOI: 10.1017/gmb.2023.17
Yuta Fujiki, Takahisa Tanaka, Kyosuke Yakabe, Natsumi Seki, Masahiro Akiyama, Ken Uchida, Yun-Gi Kim
{"title":"Hydrogen gas and the gut microbiota are potential biomarkers for the development of experimental colitis in mice","authors":"Yuta Fujiki, Takahisa Tanaka, Kyosuke Yakabe, Natsumi Seki, Masahiro Akiyama, Ken Uchida, Yun-Gi Kim","doi":"10.1017/gmb.2023.17","DOIUrl":"https://doi.org/10.1017/gmb.2023.17","url":null,"abstract":"An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GUT METABOLOMIC PROFILES IN PEDIATRIC ULCERATIVE COLITIS PATIENTS PRIOR TO AND AFTER RECEIVING FECAL MICROBIOTA TRANSPLANTS 儿童溃疡性结肠炎患者接受粪便菌群移植前后的肠道代谢组学特征
Gut microbiome (Cambridge, England) Pub Date : 2023-10-06 DOI: 10.1017/gmb.2023.15
Parastou S. Khalessi Hosseini, Beibei Wang, Yihui Luan, Fengzhu Sun, Sonia Michail
{"title":"GUT METABOLOMIC PROFILES IN PEDIATRIC ULCERATIVE COLITIS PATIENTS PRIOR TO AND AFTER RECEIVING FECAL MICROBIOTA TRANSPLANTS","authors":"Parastou S. Khalessi Hosseini, Beibei Wang, Yihui Luan, Fengzhu Sun, Sonia Michail","doi":"10.1017/gmb.2023.15","DOIUrl":"https://doi.org/10.1017/gmb.2023.15","url":null,"abstract":"An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135351097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The butyrate-producing and spore-forming bacterial genus Coprococcus as a potential biomarker for neurological disorders. 产丁酸盐和形成孢子的细菌属粪原球菌作为神经系统疾病的潜在生物标志物
Gut microbiome (Cambridge, England) Pub Date : 2023-08-30 eCollection Date: 2023-01-01 DOI: 10.1017/gmb.2023.14
Fleur Notting, Walter Pirovano, Wilbert Sybesma, Remco Kort
{"title":"The butyrate-producing and spore-forming bacterial genus <i>Coprococcus</i> as a potential biomarker for neurological disorders.","authors":"Fleur Notting, Walter Pirovano, Wilbert Sybesma, Remco Kort","doi":"10.1017/gmb.2023.14","DOIUrl":"10.1017/gmb.2023.14","url":null,"abstract":"<p><p>The host-intestinal microbiome interaction has gained much scientific attention in the past two decades, boosted by advances in DNA sequencing and cultivation techniques. An accumulating amount of evidence shows that gut microbes play crucial roles in gut homeostasis, immune system education, and are associated with quality-of-life indicators. Beneficial health factors are associated with the digestion of dietary fibres in the colon and the subsequent production of short-chain fatty acids, including acetate, propionate, and butyrate. <i>Coprococcus</i> is a butyrate-producing genus in the phylum Firmicutes, and its abundance is inversely correlated with several neuropsychological and neurodegenerative disorders. Case-control studies provide strong evidence of decreased abundance of <i>Coprococcus</i> spp. in depressed individuals. The species <i>Coprococcus eutactus</i> has the unique capacity to use two separate pathways for butyrate synthesis and has been found to be depleted in children with delayed language development and adults with Parkinson's disease. The combined literature on <i>Coprococcus</i> and the gut microbiota-brain axis points towards enhanced butyrate production and reduced colonisation of pathogenic clades as factors explaining its association with health effects. The genus <i>Coprococcus</i> is a promising candidate for a mental health biomarker and an interesting lead for novel dietary-based preventive therapies for specific neurological disorders.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46753227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Risk of bias assessment tool for systematic review and meta-analysis of the gut microbiome. 用于肠道微生物组系统综述和荟萃分析的偏倚风险评估工具
Gut microbiome (Cambridge, England) Pub Date : 2023-08-18 eCollection Date: 2023-01-01 DOI: 10.1017/gmb.2023.12
Thomas Lampeter, Charles Love, Trien T Tang, Aditi S Marella, Hayden Y Lee, Armani Oganyan, Devin Moffat, Anisha Kareem, Matthew Rusling, Aubrey Massmann, Melanie Orr, Christian Bongiorno, Li-Lian Yuan
{"title":"Risk of bias assessment tool for systematic review and meta-analysis of the gut microbiome.","authors":"Thomas Lampeter, Charles Love, Trien T Tang, Aditi S Marella, Hayden Y Lee, Armani Oganyan, Devin Moffat, Anisha Kareem, Matthew Rusling, Aubrey Massmann, Melanie Orr, Christian Bongiorno, Li-Lian Yuan","doi":"10.1017/gmb.2023.12","DOIUrl":"10.1017/gmb.2023.12","url":null,"abstract":"<p><p>Risk of bias assessment is a critical step of any meta-analysis or systematic review. Given the low sample count of many microbiome studies, especially observational or cohort studies involving human subjects, many microbiome studies have low power. This increases the importance of performing meta-analysis and systematic review for microbiome research in order to enhance the relevance and applicability of microbiome results. This work proposes a method based on the ROBINS-I tool to systematically consider sources of bias in microbiome research seeking to perform meta-analysis or systematic review for microbiome studies.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406368/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48581923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiomics characterisation of the zoo-housed gorilla gut microbiome reveals bacterial community compositions shifts, fungal cellulose-degrading, and archaeal methanogenic activity. 动物园饲养的大猩猩肠道微生物组的多组学特征揭示了细菌群落组成变化,真菌纤维素降解和古细菌产甲烷活性
Gut microbiome (Cambridge, England) Pub Date : 2023-07-19 eCollection Date: 2023-01-01 DOI: 10.1017/gmb.2023.11
Isabel M Houtkamp, Martine van Zijll Langhout, Mark Bessem, Walter Pirovano, Remco Kort
{"title":"Multiomics characterisation of the zoo-housed gorilla gut microbiome reveals bacterial community compositions shifts, fungal cellulose-degrading, and archaeal methanogenic activity.","authors":"Isabel M Houtkamp, Martine van Zijll Langhout, Mark Bessem, Walter Pirovano, Remco Kort","doi":"10.1017/gmb.2023.11","DOIUrl":"10.1017/gmb.2023.11","url":null,"abstract":"<p><p>We carried out a comparative analysis between the bacterial microbiota composition of zoo-housed western lowland gorillas and their wild counterparts through 16S rRNA gene amplicon sequencing. In addition, we characterised the carbohydrate-active and methanogenic potential of the zoo-housed gorilla (ZHG) microbiome through shotgun metagenomics and RNA sequencing. The ZHG microbiota showed increased alpha diversity in terms of bacterial species richness and a distinct composition from that of the wild gorilla microbiota, including a loss of abundant fibre-degrading and hydrogenic Chloroflexi. Metagenomic analysis of the CAZyome indicated predominant oligosaccharide-degrading activity, while RNA sequencing revealed diverse cellulase and hemi-cellulase activities in the ZHG gut, contributing to a total of 268 identified carbohydrate-active enzymes. Metatranscriptome analysis revealed a substantial contribution of 38% of the transcripts from anaerobic fungi and archaea to the gorilla microbiome. This activity originates from cellulose-degrading and hydrogenic fungal species belonging to the class Neocallimastigomycetes, as well as from methylotrophic and hydrogenotrophic methanogenic archaea belonging to the classes Thermoplasmata and Methanobacteria, respectively. Our study shows the added value of RNA sequencing in a multiomics approach and highlights the contribution of eukaryotic and archaeal activities to the gut microbiome of gorillas.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406404/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41930133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regular consumption of lacto-fermented vegetables has greater effects on the gut metabolome compared with the microbiome. 与微生物组相比,经常食用乳酸发酵蔬菜对肠道代谢组的影响更大
Gut microbiome (Cambridge, England) Pub Date : 2023-06-29 eCollection Date: 2023-01-01 DOI: 10.1017/gmb.2023.9
Kylene Guse, Ashok Sharma, Emily Weyenberg, Sam Davison, Yiwei Ma, Yuni Choi, Abigail J Johnson, Chi Chen, Andres Gomez
{"title":"Regular consumption of lacto-fermented vegetables has greater effects on the gut metabolome compared with the microbiome.","authors":"Kylene Guse, Ashok Sharma, Emily Weyenberg, Sam Davison, Yiwei Ma, Yuni Choi, Abigail J Johnson, Chi Chen, Andres Gomez","doi":"10.1017/gmb.2023.9","DOIUrl":"10.1017/gmb.2023.9","url":null,"abstract":"<p><p>The industrialisation of Western food systems has reduced the regular consumption of lacto-fermented vegetables (LFV). Consuming LFV may exert health benefits through the alteration of the gut microbiome, but the mechanisms involved remain unclear. To start understanding the possible benefits of LFV, we compared faecal microbial diversity and composition, as well as dietary habits between individuals who regularly consume LFV (<i>n</i> = 23) and those who do not (<i>n</i> = 24). We utilised microbial DNA amplicon sequencing (16S rRNA and ITS2) and untargeted metabolomics (LC-MS) to analyse stool samples. Study participants also provided three consecutive days of dietary data. Results show minor effects on microbiome composition; with the enrichment of a few microorganisms potentially associated with vegetable ferments, such as <i>Leuconostoc mesenteroides and Rhodotorula mucilaginosa</i> (<i>P</i> < 0.05), in LFV consumers. However, LFV consumption had greater effects on the faecal metabolome, with higher abundances of butyrate, acetate, and valerate (<i>P</i> < 0.05) and significantly greater metabolome diversity (<i>P</i> < 0.001). Overall, the observations of minor changes in the faecal microbiome and greater effects on the faecal metabolome from LFV consumption warrant further investigations on the health significance of LFV as regular components of the daily diet in humans.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406409/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49226842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The intestinal microbiota as an ally in the treatment of Alzheimer's disease. 肠道菌群在治疗阿尔茨海默病中的作用
Gut microbiome (Cambridge, England) Pub Date : 2023-06-19 eCollection Date: 2023-01-01 DOI: 10.1017/gmb.2023.8
Sabrina Sehn Hilgert, Daniel Penteado Martins Dias
{"title":"The intestinal microbiota as an ally in the treatment of Alzheimer's disease.","authors":"Sabrina Sehn Hilgert, Daniel Penteado Martins Dias","doi":"10.1017/gmb.2023.8","DOIUrl":"10.1017/gmb.2023.8","url":null,"abstract":"<p><p>The evolution of the understanding of the intestinal microbiota and its influence on our organism leverages it as a potential protagonist in therapies aimed at diseases that affect not only the intestine but also neural pathways and the central nervous system itself. This study, developed from a thorough systematic review, sought to demonstrate the influence of the intervention on the intestinal microbiota in subjects with Alzheimer's disease. Clinical trials using different classes of probiotics have depicted noteworthy remission of symptoms, whose measurement was performed based on screenings and scores applied before, during, and after the period of probiotics use, allowing the observation of changes in functionality and symptomatology of patients. On the other hand, faecal microbiota transplantation requires further validation through clinical trials, even though it has already been reported in case studies as promising from the symptomatology point of view. The current compilation of studies made it possible to demonstrate the potential influence of the intestinal microbiota on Alzheimer's pathology. However, new clinical studies with a larger number of participants are needed to obtain further clarification on pathophysiological correlations.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406366/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48841928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The gut microbiota-neuroimmune crosstalk and neuropathic pain: a scoping review. 肠道微生物群-神经免疫串扰和神经性疼痛:范围综述
Gut microbiome (Cambridge, England) Pub Date : 2023-06-19 eCollection Date: 2023-01-01 DOI: 10.1017/gmb.2023.7
Gayani Nawarathna, Kausar S Fakhruddin, Ali I S A Shorbagi, Lakshman P Samaranayake
{"title":"The gut microbiota-neuroimmune crosstalk and neuropathic pain: a scoping review.","authors":"Gayani Nawarathna, Kausar S Fakhruddin, Ali I S A Shorbagi, Lakshman P Samaranayake","doi":"10.1017/gmb.2023.7","DOIUrl":"10.1017/gmb.2023.7","url":null,"abstract":"<p><p>Environmental stressors can disrupt the gut-brain relationship and alter the gut microbial composition, potentially leading to chronic pain, including neuropathic pain (NP). To understand this complex relationship, we conducted a systematic scoping review to examine the gut microbial-neuroimmune connection to NP and the potential therapeutic targets. The review includes English-language manuscripts in databases such as MEDLINE, Cochrane, and DOAJ between January 2000 and April 2022. Out of the 48 full texts examined, only 15 articles met the inclusion criteria. These included a randomised controlled trial involving 327 individuals, an in vitro, and 13 animal model studies. The findings suggest that the gut flora plays a role in the immunological, neurological, and metabolic signalling pathways associated with NP. Animal studies have been the primary focus in this area, indicating that an imbalanced-gut microbiome and subsequent activation of biochemical and neuro-immunologic pathways may influence the development of NP. This review provides a comprehensive summary of the gut microbiome-immune-NP axis and identifies potential therapeutic targets. However, since most of the evidence comes from animal studies, future research should include clinical trials to gain a better understanding of the role of gut microbiota in NP and discover new therapeutic strategies.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48871637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of gut microbiota by diet and probiotics: potential approaches to prevent gestational diabetes mellitus. 饮食和益生菌对肠道微生物群的调节:预防妊娠期糖尿病的潜在途径
Gut microbiome (Cambridge, England) Pub Date : 2023-06-13 eCollection Date: 2023-01-01 DOI: 10.1017/gmb.2023.6
Marisa Carreira Cruz, Sarah Azinheiro, Sónia Gonçalves Pereira
{"title":"Modulation of gut microbiota by diet and probiotics: potential approaches to prevent gestational diabetes mellitus.","authors":"Marisa Carreira Cruz, Sarah Azinheiro, Sónia Gonçalves Pereira","doi":"10.1017/gmb.2023.6","DOIUrl":"10.1017/gmb.2023.6","url":null,"abstract":"<p><p>Gestational diabetes mellitus (GDM) is a rising global health problem that affects approximately 6% of pregnant women. Lifestyle interventions, particularly diet, and exercise are the first-line treatment, followed by pharmacotherapy, but with associated side effects to both mother and offspring. Modulation of gut microbiota may help prevent or manage GDM. Some gut bacterial groups associated with GDM are also associated with inflammatory biomarkers and gut dysbiosis. Available literature reports that low-glycaemic index diet reduces maternal fasting and 2-hour postprandial glucose and maintains a beneficial gut bacterial composition. Pre- and probiotics can aid GDM therapy by modulating gut microbiota to eubiotic status and improving glucose metabolism. Probiotics as adjuvant GDM therapy should consider bacterial strains, dosage, and treatment duration. Limitations in their use require further studies to develop specific probiotic-based GDM supplement therapy that impacts glycaemic control and inflammatory status by reducing fasting plasma glucose, insulin resistance, and improving lipid profiles of pregnant women.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406384/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47641360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信