The effect of dietary transition on infant microbiota composition and metabolic activity captured with the simulator of the human intestinal microbial ecosystem (SHIME).

Gut microbiome (Cambridge, England) Pub Date : 2025-06-13 eCollection Date: 2025-01-01 DOI:10.1017/gmb.2025.10007
Shadi Pakroo, Samira Soltani, Armin Tarrah, Gisèle LaPointe
{"title":"The effect of dietary transition on infant microbiota composition and metabolic activity captured with the simulator of the human intestinal microbial ecosystem (SHIME).","authors":"Shadi Pakroo, Samira Soltani, Armin Tarrah, Gisèle LaPointe","doi":"10.1017/gmb.2025.10007","DOIUrl":null,"url":null,"abstract":"<p><p>The Simulator of the Human Intestinal Microbial Ecosystem (SHIME) system was provided with baby feed for one week to stabilise the microbial community, followed by a 10-day period with baby feed and another 10-day period with adult feed. The study was conducted using sterilised and standardised feed formulations, which model dietary conditions in vitro. Following the transition from baby to adult feed, a significant reduction in the proportion of butyrate in comparison to total SCFA was found after transitioning to adult feed in both the transverse colon and distal colon bioreactors. Our findings suggest that abrupt early-life dietary changes from simple to complex carbohydrates as well as the exclusion of bovine milk proteins can transiently lower the ability of the microbiota to produce butyrate. The lack of additional microbial input leads to a delay or impairment of the adaptation to the modified feed composition. However, given the short treatment duration and sterilised feed composition, these findings should be interpreted within the limitations of this in vitro model. A reduction in butyrate concentration following the transition to adult feed may reflect a temporary shift in microbial metabolic activity rather than a long-term impact on energy extraction efficiency in vivo.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"6 ","pages":"e9"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231521/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut microbiome (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/gmb.2025.10007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Simulator of the Human Intestinal Microbial Ecosystem (SHIME) system was provided with baby feed for one week to stabilise the microbial community, followed by a 10-day period with baby feed and another 10-day period with adult feed. The study was conducted using sterilised and standardised feed formulations, which model dietary conditions in vitro. Following the transition from baby to adult feed, a significant reduction in the proportion of butyrate in comparison to total SCFA was found after transitioning to adult feed in both the transverse colon and distal colon bioreactors. Our findings suggest that abrupt early-life dietary changes from simple to complex carbohydrates as well as the exclusion of bovine milk proteins can transiently lower the ability of the microbiota to produce butyrate. The lack of additional microbial input leads to a delay or impairment of the adaptation to the modified feed composition. However, given the short treatment duration and sterilised feed composition, these findings should be interpreted within the limitations of this in vitro model. A reduction in butyrate concentration following the transition to adult feed may reflect a temporary shift in microbial metabolic activity rather than a long-term impact on energy extraction efficiency in vivo.

利用人类肠道微生物生态系统模拟器(SHIME)研究饮食转换对婴儿微生物群组成和代谢活性的影响。
人类肠道微生物生态系统模拟器(SHIME)系统被喂食婴儿饲料一周以稳定微生物群落,随后喂食婴儿饲料10天,再喂食成人饲料10天。该研究使用无菌和标准化饲料配方进行,该配方模拟体外饮食条件。从婴儿饲料过渡到成人饲料后,横结肠和远端结肠生物反应器中丁酸盐与总短链脂肪酸的比例均显著降低。我们的研究结果表明,生命早期饮食从简单碳水化合物到复杂碳水化合物的突然变化以及排除牛奶蛋白可以暂时降低微生物群产生丁酸盐的能力。缺乏额外的微生物输入会导致对改性饲料成分的适应延迟或损害。然而,考虑到处理时间短和无菌饲料成分,这些发现应该在体外模型的限制下解释。过渡到成虫饲料后丁酸盐浓度的降低可能反映了微生物代谢活动的暂时变化,而不是对体内能量提取效率的长期影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信