The effect of dietary transition on infant microbiota composition and metabolic activity captured with the simulator of the human intestinal microbial ecosystem (SHIME).
{"title":"The effect of dietary transition on infant microbiota composition and metabolic activity captured with the simulator of the human intestinal microbial ecosystem (SHIME).","authors":"Shadi Pakroo, Samira Soltani, Armin Tarrah, Gisèle LaPointe","doi":"10.1017/gmb.2025.10007","DOIUrl":null,"url":null,"abstract":"<p><p>The Simulator of the Human Intestinal Microbial Ecosystem (SHIME) system was provided with baby feed for one week to stabilise the microbial community, followed by a 10-day period with baby feed and another 10-day period with adult feed. The study was conducted using sterilised and standardised feed formulations, which model dietary conditions in vitro. Following the transition from baby to adult feed, a significant reduction in the proportion of butyrate in comparison to total SCFA was found after transitioning to adult feed in both the transverse colon and distal colon bioreactors. Our findings suggest that abrupt early-life dietary changes from simple to complex carbohydrates as well as the exclusion of bovine milk proteins can transiently lower the ability of the microbiota to produce butyrate. The lack of additional microbial input leads to a delay or impairment of the adaptation to the modified feed composition. However, given the short treatment duration and sterilised feed composition, these findings should be interpreted within the limitations of this in vitro model. A reduction in butyrate concentration following the transition to adult feed may reflect a temporary shift in microbial metabolic activity rather than a long-term impact on energy extraction efficiency in vivo.</p>","PeriodicalId":73187,"journal":{"name":"Gut microbiome (Cambridge, England)","volume":"6 ","pages":"e9"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12231521/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut microbiome (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/gmb.2025.10007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Simulator of the Human Intestinal Microbial Ecosystem (SHIME) system was provided with baby feed for one week to stabilise the microbial community, followed by a 10-day period with baby feed and another 10-day period with adult feed. The study was conducted using sterilised and standardised feed formulations, which model dietary conditions in vitro. Following the transition from baby to adult feed, a significant reduction in the proportion of butyrate in comparison to total SCFA was found after transitioning to adult feed in both the transverse colon and distal colon bioreactors. Our findings suggest that abrupt early-life dietary changes from simple to complex carbohydrates as well as the exclusion of bovine milk proteins can transiently lower the ability of the microbiota to produce butyrate. The lack of additional microbial input leads to a delay or impairment of the adaptation to the modified feed composition. However, given the short treatment duration and sterilised feed composition, these findings should be interpreted within the limitations of this in vitro model. A reduction in butyrate concentration following the transition to adult feed may reflect a temporary shift in microbial metabolic activity rather than a long-term impact on energy extraction efficiency in vivo.