{"title":"Three independent evolutionary events of sequestrate <i>Lactifluus</i> species in Australasia.","authors":"T Lebel, J A Cooper, M A Castellano, J Nuytinck","doi":"10.3114/fuse.2021.08.02","DOIUrl":"10.3114/fuse.2021.08.02","url":null,"abstract":"<p><p>Three Australian species with sequestrate basidiome forms are recorded for the first time in the genus <i>Lactifluus</i> based on nuclear ITS-LSU and morphological data. These species represent three rare independent evolutionary events resulting in sequestrate basidiomes arising from agaricoid species in three different sections in two subgenera. All three species have highly reduced basidiome forms, and no species with intermediate forms have been found. <i>Lactifluus dendriticus</i> is unique in the genus in having highly branched, dendritic terminal elements in the pileipellis. We provide full descriptions of two species: <i>Zelleromyces dendriticus</i> (= <i>Lactifluus dendriticus comb. nov</i>.) in <i>Lactifluus</i> subg. <i>Lactifluus</i> sect. <i>Gerardii</i>, and <i>Lactifluus geoprofluens sp. nov</i>. in <i>Lf.</i> subg. <i>Lactifluus</i> sect. <i>Lactifluus</i>. A reduced description is provided for the third, <i>Lactifluus sp. prov.</i> KV181 in <i>Lf.</i> subg. <i>Pseudogymnocarpi</i> sect. <i>Pseudogymnocarpi</i>, as it is currently known from a single sequence.</p>","PeriodicalId":73121,"journal":{"name":"Fungal systematics and evolution","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687060/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39663887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P W Crous, M Hernández-Restrepo, A L van Iperen, M Starink-Willemse, M Sandoval-Denis, J Z Groenewald
{"title":"Citizen science project reveals novel fusarioid fungi (<i>Nectriaceae, Sordariomycetes</i>) from urban soils.","authors":"P W Crous, M Hernández-Restrepo, A L van Iperen, M Starink-Willemse, M Sandoval-Denis, J Z Groenewald","doi":"10.3114/fuse.2021.08.09","DOIUrl":"https://doi.org/10.3114/fuse.2021.08.09","url":null,"abstract":"Soil fungi play a crucial role in soil quality and fertility in being able to break down organic matter but are frequently also observed to play a role as important plant pathogens. As part of a Citizen Science Project initiated by the Westerdijk Fungal Biodiversity Institute and the Utrecht University Museum, which aimed to describe novel fungal species from Dutch garden soil, the diversity of fusarioid fungi (Fusarium and other fusarioid genera), which are members of Nectriaceae (Hypocreales) was investigated. Preliminary analyses of ITS and LSU sequences from more than 4 750 isolates obtained indicated that 109 strains belong to this generic complex. Based on multi-locus phylogenies of combinations of cmdA, tef1, rpb1, rpb2 and tub2 alignments, and morphological characteristics, 25 species were identified, namely 22 in Fusarium and three in Neocosmospora. Furthermore, two species were described as new namely F. vanleeuwenii from the Fusarium oxysporum species complex (FOSC), and F. wereldwijsianum from the Fusarium incarnatum-equiseti species complex (FIESC). Other species encountered in this study include in the FOSC: F. curvatum, F. nirenbergiae, F. oxysporum and three undescribed Fusarium spp.; in the FIESC: F. clavus, F. croceum, F. equiseti, F. flagelliforme and F. toxicum; Fusarium tricinctum species complex: F. flocciferum and F. torulosum; the Fusarium sambucinum species complex: F. culmorum and F. graminearum; the Fusarium redolens species complex: F. redolens; and the Fusarium fujikuroi species complex: F. verticillioides. Three species of Neocosmospora were encountered, namely N. solani, N. stercicola and N. tonkinensis. Although soil fungal diversity has been well studied in the Netherlands, this study revealed two new species, and eight new records: F. clavus, F. croceum, F. flagelliforme, F. odoratissimum, F. tardicrescens, F. toxicum, F. triseptatum and N. stercicola.","PeriodicalId":73121,"journal":{"name":"Fungal systematics and evolution","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39679280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S Svantesson, U Kõljalg, C Wurzbacher, I Saar, K-H Larsson, E Larsson
{"title":"<i>Polyozellus vs. Pseudotomentella</i>: generic delimitation with a multi-gene dataset.","authors":"S Svantesson, U Kõljalg, C Wurzbacher, I Saar, K-H Larsson, E Larsson","doi":"10.3114/fuse.2021.08.11","DOIUrl":"https://doi.org/10.3114/fuse.2021.08.11","url":null,"abstract":"<p><p><i>Polyozellus</i> and <i>Pseudotomentella</i> are two genera of closely related, ectomycorrhizal fungi in the order <i>Thelephorales</i>; the former stipitate and the latter corticioid. Both are widespread in the Northern Hemisphere and many species from both genera seem to be restricted to old growth forest. This study aimed to: a) identify genetic regions useful in inferring the phylogenetic relationship between <i>Polyozellus</i> and <i>Pseudotomentella</i>, b) infer this relationship with the regions identified and c) make any taxonomic changes warranted by the result. <i>RPB2</i>, mtSSU and nearly full-length portions of nrLSU and nrSSU were found to be comparatively easy to sequence and provide a strong phylogenetic signal. A STACEY species tree of these three regions revealed that <i>Polyozellus</i> makes <i>Pseudotomentella</i> paraphyletic. As a result, nearly all species currently placed in <i>Pseudotomentella</i> were recombined to <i>Polyozellus. Pseudotomentella larsenii</i> was found to be closer to <i>Tomentellopsis</i> than <i>Polyozellus</i>, but its placement needs further study and it was hence not recombined.</p>","PeriodicalId":73121,"journal":{"name":"Fungal systematics and evolution","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39679282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R Chang, M J Wingfield, S Marincowitz, Z W de Beer, X Zhou, T A Duong
{"title":"Ophiostomatoid fungi including a new species associated with Asian larch bark beetle <i>Ips subelongatus</i>, in Heilongjiang (Northeast China).","authors":"R Chang, M J Wingfield, S Marincowitz, Z W de Beer, X Zhou, T A Duong","doi":"10.3114/fuse.2021.08.12","DOIUrl":"https://doi.org/10.3114/fuse.2021.08.12","url":null,"abstract":"<p><p><i>Ips subelongatus</i> (<i>Coleoptera</i>, <i>Scolytinae</i>) is an important bark beetle species that infests <i>Larix</i> spp. in Asia. Individuals of this beetle are vectors of ophiostomatoid fungi, on their exoskeletons, that are transmitted to infested trees. In this study, the symbiotic assemblage of ophiostomatoid fungi associated with <i>I. subelongatus</i> in Northeast China was studied. Fungal isolates were identified based on their morphological characters and sequences of ITS, beta-tubulin, elongation factor 1-alpha and calmodulin gene regions. In total, 48 isolates were collected and identified, residing in six taxa. These included a novel species, described here as <i>Ophiostoma gmelinii sp. nov.</i></p>","PeriodicalId":73121,"journal":{"name":"Fungal systematics and evolution","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687057/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39679283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Taxonomy and phylogeny of the <i>Erysiphe lonicerae</i> complex (<i>Helotiales</i>, <i>Erysiphaceae</i>) on <i>Lonicera</i> spp.","authors":"M Bradshaw, U Braun, M Götz, S Takamatsu","doi":"10.3114/fuse.2021.07.03","DOIUrl":"10.3114/fuse.2021.07.03","url":null,"abstract":"<p><p>The phylogeny and taxonomy of powdery mildews, belonging to the genus <i>Erysiphe</i>, on <i>Lonicera</i> species throughout the world are examined and discussed. Phylogenetic analyses revealed that sequences retrieved from <i>Erysiphe lonicerae</i>, a widespread powdery mildew species distributed in the Northern Hemisphere on a wide range of <i>Lonicera</i> spp., constitutes a complex of two separate species, <i>viz</i>., <i>E. lonicerae</i> (<i>s. str</i>.) and <i>Erysiphe ehrenbergii comb. nov</i>. <i>Erysiphe lonicerae</i> occurs on <i>Lonicera</i> spp. belonging to <i>Lonicera</i> subgen. <i>Lonicera</i> (= subgen. <i>Caprifolium</i> and subgen. <i>Periclymenum</i>), as well as <i>L. japonica</i>. <i>Erysiphe ehrenbergii comb. nov</i>. occurs on <i>Lonicera</i> spp. of <i>Lonicera</i> subgen. <i>Chamaecerasus</i>. Phylogenetic and morphological analyses have also revealed that <i>Microsphaera caprifoliacearum</i> (≡ <i>Erysiphe caprifoliacearum</i>) should be reduced to synonymy with <i>E. lonicerae</i> (<i>s. str.</i>). Additionally, <i>Erysiphe lonicerina sp. nov</i>. on <i>Lonicera japonica</i> in Japan is described and the new name <i>Erysiphe flexibilis</i>, based on <i>Microsphaera lonicerae</i> var. <i>flexuosa</i>, is introduced. The phylogeny of <i>Erysiphe ehrenbergii</i> and <i>E. lonicerae</i> as well as other <i>Erysiphe</i> species on <i>honeysuckle</i> is discussed, and a survey of all species, including a key to the species concerned, is provided. Citation: Bradshaw M, Braun U, Götz M, Takamatsu S (2020). Taxonomy and phylogeny of the <i>Erysiphe lonicerae</i> complex (<i>Helotiales</i>, <i>Erysiphaceae</i>) on <i>Lonicera</i> spp. <i>Fungal Systematics and Evolution</i> <b>7:</b> 49-65. doi: 10.3114/fuse.2021.07.03.</p>","PeriodicalId":73121,"journal":{"name":"Fungal systematics and evolution","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/97/47/fuse-2021-7-3.PMC8165964.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39011756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E De Crop, L Delgat, J Nuytinck, R E Halling, A Verbeken
{"title":"A short story of nearly everything in <i>Lactifluus</i> (<i>Russulaceae</i>).","authors":"E De Crop, L Delgat, J Nuytinck, R E Halling, A Verbeken","doi":"10.3114/fuse.2021.07.07","DOIUrl":"10.3114/fuse.2021.07.07","url":null,"abstract":"<p><p>Fungi are a large and hyper-diverse group with major taxa present in every ecosystem on earth. However, compared to other eukaryotic organisms, their diversity is largely understudied. Since the rise of molecular techniques, new lineages are being discovered at an increasing rate, but many are not accurately characterised. Access to comprehensive and reliable taxonomic information of organisms is fundamental for research in different disciplines exploring a variety of questions. A globally dominant ectomycorrhizal (ECM) fungal family in terrestrial ecosystems is the <i>Russulaceae</i> (<i>Russulales</i>, <i>Basidiomycota</i>) family. Amongst the mainly agaricoid <i>Russulaceae</i> genera, the ectomycorrhizal genus <i>Lactifluus</i> was historically least studied due to its largely tropical distribution in many underexplored areas and the apparent occurrence of several species complexes. Due to increased studies in the tropics, with a focus on this genus, knowledge on <i>Lactifluus</i> grew. We demonstrate here that <i>Lactifluus</i> is now one of the best-known ECM genera. This paper aims to provide a thorough overview of the current knowledge of <i>Lactifluus</i>, with information on diversity, distribution, ecology, phylogeny, taxonomy, morphology, and ethnomycological uses of species in this genus. This is a result of our larger study, aimed at building a comprehensive and complete dataset or taxonomic framework for <i>Lactifluus</i>, based on molecular, morphological, biogeographical, and taxonomical data as a tool and reference for other researchers. <b>Citation:</b> De Crop E, Delgat L, Nuytinck J, Halling RE, Verbeken A (2021). A short story of nearly everything in <i>Lactifluus (Russulaceae)</i>. <i>Fungal Systematics and Evolution</i> <b>7:</b> 133-164. doi: 10.3114/fuse.2021.07.07.</p>","PeriodicalId":73121,"journal":{"name":"Fungal systematics and evolution","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/82/e1/fuse-2021-7-7.PMC8166210.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39024000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>Pseudocercospora</i> and allied genera associated with leaf spots of banana (<i>Musa</i> spp.).","authors":"P W Crous, J Carlier, V Roussel, J Z Groenewald","doi":"10.3114/fuse.2021.07.01","DOIUrl":"https://doi.org/10.3114/fuse.2021.07.01","url":null,"abstract":"<p><p>The Sigatoka leaf spot complex on <i>Musa</i> spp. includes three major pathogens: <i>Pseudocercospora</i>, namely <i>P. musae</i> (Sigatoka leaf spot or yellow Sigatoka), <i>P. eumusae</i> (eumusae leaf spot disease), and <i>P. fijiensis</i> (black leaf streak disease or black Sigatoka). However, more than 30 species of <i>Mycosphaerellaceae</i> have been associated with Sigatoka leaf spots of banana, and previous reports of <i>P. musae</i> and <i>P. eumusae</i> need to be re-evaluated in light of recently described species. The aim of the present study was thus to investigate a global set of 228 isolates of <i>P. musae, P. eumusae</i> and close relatives on banana using multigene DNA sequence data [internal transcribed spacer regions with intervening 5.8S nrRNA gene (ITS), RNA polymerase II second largest subunit gene (<i>rpb2</i>), translation elongation factor 1-alpha gene (<i>tef1</i>), beta-tubulin gene (<i>tub2</i>), and the actin gene (<i>act</i>)] to confirm if these isolates represent <i>P. musae</i>, or a closely allied species. Based on these data one new species is described, namely <i>P. pseudomusae</i>, which is associated with leaf spot symptoms resembling those of <i>P. musae</i> on <i>Musa</i> in Indonesia. Furthermore, <i>P. eumusae, P. musae</i> and <i>P. fijiensis</i> are shown to be well defined taxa, with some isolates also representing <i>P. longispora.</i> Other genera encountered in the dataset are species of <i>Zasmidium</i> (Taiwan leaf speckle), <i>Metulocladosporiella</i> <i>(</i>Cladosporium leaf speckle) and Scolecobasidium leaf speckle. <b>Citation:</b> Crous P, Carlier J, Roussel V, Groenewald JZ (2020). <i>Pseudocercospora</i> and allied genera associated with leaf spots of banana (<i>Musa</i> spp.). <i>Fungal Systematics and Evolution</i> 7: 1-19. doi: 10.3114/fuse.2021.07.01.</p>","PeriodicalId":73121,"journal":{"name":"Fungal systematics and evolution","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/c5/fuse-2021-7-1.PMC8165963.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39011754","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A higher-rank classification for rust fungi, with notes on genera.","authors":"M C Aime, A R McTaggart","doi":"10.3114/fuse.2021.07.02","DOIUrl":"10.3114/fuse.2021.07.02","url":null,"abstract":"<p><p>The rust fungi (<i>Pucciniales</i>) with 7000+ species comprise one of the largest orders of <i>Fungi</i>, and one for which taxonomy at all ranks remains problematic. Here we provide a taxonomic framework, based on 16 years of sampling that includes <i>ca</i>. 80 % of accepted genera including type species wherever possible, and three DNA loci used to resolve the deeper nodes of the rust fungus tree of life. <i>Pucciniales</i> are comprised of seven suborders - <i>Araucariomycetineae subord. nov., Melampsorineae</i>, <i>Mikronegeriineae</i>, <i>Raveneliineae subord. nov., Rogerpetersoniineae subord. nov.</i>, <i>Skierkineae subord. nov</i>., and <i>Uredinineae</i> - and 18 families - <i>Araucariomycetaceae fam. nov</i>., <i>Coleosporiaceae</i>, <i>Crossopsoraceae fam. nov., Gymnosporangiaceae, Melampsoraceae</i>, <i>Milesinaceae fam. nov</i>., <i>Ochropsoraceae fam.</i> & <i>stat. nov</i>., <i>Phakopsoraceae</i>, <i>Phragmidiaceae</i>, <i>Pileolariaceae</i>, <i>Pucciniaceae, Pucciniastraceae</i>, <i>Raveneliaceae</i>, <i>Rogerpetersoniaceae fam. nov</i>., <i>Skierkaceae fam.</i> & <i>stat. nov</i>., <i>Sphaerophragmiaceae</i>, <i>Tranzscheliaceae fam.</i> & <i>stat. nov</i>., and <i>Zaghouaniaceae</i>. The new genera <i>Araucariomyces</i> (for <i>Aecidium fragiforme</i> and <i>Ae. balansae</i>)<i>, Neoolivea</i> (for <i>Olivea tectonae</i>), <i>Rogerpetersonia</i> (for <i>Caeoma torreyae</i>), and <i>Rossmanomyces</i> (for <i>Chrysomyxa monesis, Ch. pryrolae,</i> and <i>Ch. ramischiae</i>) are proposed. Twenty-one new combinations and one new name are introduced for: <i>Angiopsora apoda</i>, <i>Angiopsora chusqueae, Angiopsora paspalicola</i>, <i>Araucariomyces balansae, Araucariomyces fragiformis, Cephalotelium evansii, Cephalotelium neocaledoniense, Cephalotelium xanthophloeae, Ceropsora weirii, Gymnotelium speciosum, Lipocystis acaciae-pennatulae</i>, <i>Neoolivea tectonae, Neophysopella kraunhiae, Phakopsora pipturi, Rogerpetersonia torreyae, Rossmanomyces monesis, Rossmanomyces pryrolae, Rossmanomyces ramischiae, Thekopsora americana, Thekopsora potentillae, Thekopsora pseudoagrimoniae,</i> and <i>Zaghouania notelaeae.</i> Higher ranks are newly defined with consideration of morphology, host range and life cycle. Finally, we discuss the evolutionary and diversification trends within <i>Pucciniales</i>. <b>Citation:</b> Aime MC, McTaggart AR (2020). A higher-rank classification for rust fungi, with notes on genera. <i>Fungal Systematics and Evolution</i> <b>7:</b> 21-47. doi: 10.3114/fuse.2021.07.02.</p>","PeriodicalId":73121,"journal":{"name":"Fungal systematics and evolution","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/4b/25/fuse-2021-7-2.PMC8165960.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39011755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C Morales-Rodríguez, Y Wang, D Martignoni, A Vannini
{"title":"<i>Phytophthora cathayensis sp. nov</i>., a new species pathogenic to Chinese Hickory (<i>Carya cathayensis</i>) in southeast China.","authors":"C Morales-Rodríguez, Y Wang, D Martignoni, A Vannini","doi":"10.3114/fuse.2021.07.05","DOIUrl":"10.3114/fuse.2021.07.05","url":null,"abstract":"<p><p>Crown decline and mortality associated with collar lesions were observed on <i>Carya cathayensis</i> (Chinese hickory) trees in a plantation in Zhejiang province, China. Examination of active lesions resulted in the isolation of a homothallic, papillate <i>Phytophthora</i> sp. Detailed morphological and physiological studies and phylogenetic analysis, using ITS, beta-tubulin, cytochrome oxidase I, and heat shock protein 90 gene regions, revealed that all isolates belonged to an undescribed species residing in phylogenetic Clade 4, which is described here as <i>Phytophthora cathayensis sp. nov</i>. Inoculation trials were conducted under greenhouse conditions on <i>C. cathayensis</i> and <i>C. illinoensis</i> (pecan) plants to fulfill Koch postulates and hypothesize a possible pathway of the incursion. An existing report of a <i>Phytophthora</i> species with the same ITS sequence was reported on <i>C. illinoensis</i> from the USA in 2009. The difference in susceptibility of the two inoculated <i>Carya</i> species, and the report from the USA, suggest a possible introduction with plant material from the USA to China. <b>Citation:</b> Morales-Rodríguez C, Wang Y, Martignoni D, Vannini A (2020). <i>Phytophthora cathayensis sp. nov.</i>, a new species pathogenic to Chinese Hickory (<i>Carya cathayensis</i>) in southeast China. <i>Fungal Systematics and Evolution</i> <b>7:</b> 99-111. doi: 10.3114/fuse.2021.07.05.</p>","PeriodicalId":73121,"journal":{"name":"Fungal systematics and evolution","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/26/24/fuse-2021-7-5.PMC8165965.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39011759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P W Crous, U Braun, B A McDonald, C L Lennox, J Edwards, R C Mann, A Zaveri, C C Linde, P S Dyer, J Z Groenewald
{"title":"Redefining genera of cereal pathogens: <i>Oculimacula</i>, <i>Rhynchosporium</i> and <i>Spermospora</i>.","authors":"P W Crous, U Braun, B A McDonald, C L Lennox, J Edwards, R C Mann, A Zaveri, C C Linde, P S Dyer, J Z Groenewald","doi":"10.3114/fuse.2021.07.04","DOIUrl":"https://doi.org/10.3114/fuse.2021.07.04","url":null,"abstract":"<p><p>The taxonomy of <i>Oculimacula, Rhynchosporium</i> and <i>Spermospora</i> is re-evaluated, along with that of phylogenetically related genera<i>.</i> Isolates are identified using comparisons of DNA sequences of the internal transcribed spacer ribosomal RNA locus (ITS), partial translation elongation factor 1-alpha (<i>tef1</i>), actin (<i>act</i>), DNA-directed RNA polymerase II largest (<i>rpb1</i>) and second largest subunit (<i>rpb2</i>) genes, and the nuclear ribosomal large subunit (LSU), combined with their morphological characteristics. <i>Oculimacula</i> is restricted to two species, <i>O. acuformis</i> and <i>O. yallundae</i>, with <i>O. aestiva</i> placed in <i>Cyphellophora</i>, and <i>O. anguioides</i> accommodated in a new genus, <i>Helgardiomyces</i>. <i>Rhynchosporium s. str</i>. is restricted to species with 1-septate conidia and hooked apical beaks, while <i>Rhynchobrunnera</i> is introduced for species with 1-3-septate, straight conidia, lacking any apical beak. <i>Rhynchosporium graminicola</i> is proposed to replace the name <i>R. commune</i> applied to the barley scald pathogen based on nomenclatural priority. <i>Spermospora</i> is shown to be paraphyletic, representing <i>Spermospora</i> (type: <i>S. subulata</i>), with three new species, <i>S. arrhenatheri, S. loliiphila</i> and <i>S. zeae</i>, and <i>Neospermospora gen. nov</i>. (type: <i>N. avenae</i>)<i>. Ypsilina</i> (type: <i>Y. graminea</i>), is shown to be monophyletic, but appears to be of minor importance on cereals. Finally<i>, Vanderaaea gen. nov</i>. (type: <i>V. ammophilae</i>), is introduced as a new coelomycetous fungus occurring on dead leaves of <i>Ammophila arenaria</i>. <b>Citation:</b> Crous PW, Braun U, McDonald BA, Lennox CL, Edwards J, Mann RC, Zaveri A, Linde CC, Dyer PS, Groenewald JZ (2020). Redefining genera of cereal pathogens: <i>Oculimacula</i>, <i>Rhynchosporium</i> and <i>Spermospora</i>. <i>Fungal Systematics and Evolution</i> <b>7:</b> 67-98. doi: 10.3114/fuse.2021.07.04.</p>","PeriodicalId":73121,"journal":{"name":"Fungal systematics and evolution","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5f/56/fuse-2021-7-4.PMC8165968.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39011757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}