Shujian Gao, Xi Chen, Zewen Pan, Zhe Tian, Fushun Liu
{"title":"A method for reconstructing the dynamic displacement of floating structures based on acceleration measurements and comparison with data-reconstruction techniques.","authors":"Shujian Gao, Xi Chen, Zewen Pan, Zhe Tian, Fushun Liu","doi":"10.1038/s44172-025-00402-9","DOIUrl":"https://doi.org/10.1038/s44172-025-00402-9","url":null,"abstract":"<p><p>Accurately measuring the dynamic response in marine structures is crucial for ensuring service safety. Here we developed a method for reconstructing the dynamic displacement of floating structures based on acceleration measurements, addressing the challenges posed by the limitations of non-contact measurement devices due to the absence of fixed reference points in marine environments. This method avoids the issues of transition and low-frequency component loss typically encountered in integration-based reconstruction methods by the precise removal of drift terms, while achieving dual improvements in both reconstruction accuracy and efficiency compared to recent methods. A comprehensive comparison is made between the proposed method and widely used displacement measurement devices in physical model testing and field applications of offshore floating structures, validating the broad potential for applications requiring structural displacement measurement in complex marine environments.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"68"},"PeriodicalIF":0.0,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nina A Moiseiwitsch, Sanika Pandit, Nicole Zwennes, Kimberly Nellenbach, Ana Sheridan, Jessica LeGrand, Eunice Chee, Sarah Ozawa, Brigid Troan, Wen Yih Aw, William Polacheck, Mansoor A Haider, Ashley C Brown
{"title":"Colloidal-fibrillar composite gels demonstrate structural reinforcement, secondary fibrillar alignment, and improved vascular healing outcomes.","authors":"Nina A Moiseiwitsch, Sanika Pandit, Nicole Zwennes, Kimberly Nellenbach, Ana Sheridan, Jessica LeGrand, Eunice Chee, Sarah Ozawa, Brigid Troan, Wen Yih Aw, William Polacheck, Mansoor A Haider, Ashley C Brown","doi":"10.1038/s44172-025-00400-x","DOIUrl":"https://doi.org/10.1038/s44172-025-00400-x","url":null,"abstract":"<p><p>Many biological tissues contain colloids within a fibrillar structure. Here, we develop and characterize colloidal-fibrillar scaffolds through examination of the effects of relative colloid and fiber ratios within a fibrin-based model system composed of fibrin-based nanoparticles (FBNs) within a natural fibrin scaffold. At lower concentrations, FBNs primarily integrate into the fibrillar fibrin matrix, strengthening it. At high concentrations, colloid-colloid interactions dominate and FBNs primarily form a highly aligned secondary structure that does not strengthen the fibrillar matrix. At intermediate concentrations, both reinforcement of the fibrin matrix and colloid-colloid interactions are observed. Our characterization of this colloidal-fibrillar system provides insight into new avenues for wound healing biomaterial development. Using structural and mechanical results, we developed a biomimetic surgical sealant. When applied to a vascular healing model, FBN gel resulted in improved vessel healing. This colloidal-fibrillar composite can greatly improve healing outcomes and should be applied to other tissues.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"67"},"PeriodicalIF":0.0,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samira Frey, Luca Antognini, Jad Benserhir, Emanuele Ripiccini, Coenraad de Koning, Andreas Riedo, Mohamed Belhaj, Claudio Bruschini, Edoardo Charbon, Christophe Ballif, Nicolas Wyrsch
{"title":"Optimizing photon capture: advancements in amorphous silicon-based microchannel plates.","authors":"Samira Frey, Luca Antognini, Jad Benserhir, Emanuele Ripiccini, Coenraad de Koning, Andreas Riedo, Mohamed Belhaj, Claudio Bruschini, Edoardo Charbon, Christophe Ballif, Nicolas Wyrsch","doi":"10.1038/s44172-025-00394-6","DOIUrl":"10.1038/s44172-025-00394-6","url":null,"abstract":"<p><p>Microchannel plates are electron multipliers widely used in applications such as particle detection, imaging, or mass spectrometry and are often paired with a photocathode to enable photon detection. Conventional microchannel plates, made of glass fibers, face limitations in manufacturing flexibility and integration with electronic readouts. Hydrogenated amorphous silicon-based microchannel plates offer a compelling alternative and provide unique advantages in these areas. Here, we report on the characterization of the time resolution of amorphous silicon-based microchannel plates. Using high photoelectron flux and an amplifier, we measured a time resolution of (4.6 ± 0.1) ps, while at lower fluxes, the arrival time uncertainty increased to (12.6 ± 0.2) ps. By minimizing the distance between the detector and a low-noise amplifier, we achieved a time resolution of (6.1 ± 0.2) ps even at low fluxes, demonstrating the exceptional timing capabilities of these detectors. Furthermore, we developed a new detector generation with funnel-shaped channel openings, increasing the active area to 95% and with simulated electron detection efficiency over 92%. Preliminary testing shows promising results, though challenges remain in single-particle detection. These findings highlight the potential of amorphous silicon-based microchannel plates for applications requiring high temporal resolution and detection efficiency.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"64"},"PeriodicalIF":0.0,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143805034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preserving privacy and video quality through remote physiological signal removal.","authors":"Saksham Bhutani, Mohamed Elgendi, Carlo Menon","doi":"10.1038/s44172-025-00363-z","DOIUrl":"10.1038/s44172-025-00363-z","url":null,"abstract":"<p><p>The revolutionary remote photoplethysmography (rPPG) technique has enabled intelligent devices to estimate physiological parameters with remarkable accuracy. However, the continuous and surreptitious recording of individuals by these devices and the collecting of sensitive health data without users' knowledge or consent raise serious privacy concerns. Here we explore frugal methods for modifying facial videos to conceal physiological signals while maintaining image quality. Eleven lightweight modification methods, including blurring operations, additive noises, and time-averaging techniques, were evaluated using five different rPPG techniques across four activities: rest, talking, head rotation, and gym. These rPPG methods require minimal computational resources, enabling real-time implementation on low-compute devices. Our results indicate that the time-averaging sliding frame method achieved the greatest balance between preserving the information within the frame and inducing a heart rate error, with an average error of 22 beats per minute (bpm). Further, the facial region of interest was found to be the most effective and to offer the best trade-off between bpm errors and information loss.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"66"},"PeriodicalIF":0.0,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143805039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maximilian Gießler, Bernd Waltersberger, Thomas Götz, Robert Rockenfeller
{"title":"A multi-method framework for establishing an angular acceleration reference in sensor calibration and uncertainty quantification.","authors":"Maximilian Gießler, Bernd Waltersberger, Thomas Götz, Robert Rockenfeller","doi":"10.1038/s44172-025-00384-8","DOIUrl":"10.1038/s44172-025-00384-8","url":null,"abstract":"<p><p>Robots are increasingly being used across various sectors, from industry and healthcare to household applications. In practice, a pivotal challenge is the reaction to unexpected external disturbances, whose real-time feedback often relies on (noisy) sensor measurements. Subsequent inverse-dynamics calculations demand noise-amplifying numerical differentiation, leading to impracticable results. Although much effort has been spent on establishing direct measurement approaches, their measurement uncertainty quantification has not or yet insufficiently been tackled in the literature. Here, we propose a multi-method framework to develop an angular acceleration reference and provide evidence that it can serve as a measurement standard to calibrate various kinematic sensors. Within the framework, we use Monte-Carlo simulations to quantify the uncertainty of a direct measurement sensor recently developed by our team; the inertial measurement cluster (IMC). For angular accelerations up to 21 rad/s<sup>2</sup>, the standard deviation of the IMC was on average only 0.3 rad/s<sup>2</sup> (95% CI: [0.28,0.31] rad/s<sup>2</sup>), which constitutes a reliable data-sheet record. Further, using least-squares optimization, we show that the deviation of IMC with respect to the reference was not only less on the level of angular acceleration but also on the level of angular velocity and angle, when compared to other direct and indirect measurement methods.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"65"},"PeriodicalIF":0.0,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143804945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed S Abdelkhalik, Xavier Garcia-Santiago, Thomas-Jan van Raaij, Toni López, Anton Matthijs Berghuis, Lianne M A de Jong, Jaime Gómez Rivas
{"title":"Enhanced and directional electroluminescence from MicroLEDs using metallic or dielectric metasurfaces.","authors":"Mohamed S Abdelkhalik, Xavier Garcia-Santiago, Thomas-Jan van Raaij, Toni López, Anton Matthijs Berghuis, Lianne M A de Jong, Jaime Gómez Rivas","doi":"10.1038/s44172-025-00401-w","DOIUrl":"10.1038/s44172-025-00401-w","url":null,"abstract":"<p><p>Micro light-emitting diode devices (microLEDs) have the potential to lead the next generation of displays. However, their integration for achieving high brightness is severely limited by the challenge of their low external quantum efficiency (EQE). Another limiting factor of such devices is their Lambertian emission, which requires secondary optics to beam the emitted light in defined directions. To address these limitations, we introduce metallic and dielectric metasurfaces to improve light outcoupling efficiency and control the emission directionality of blue LEDs with micrometer size. The proposed mechanism relies on the interaction between light emitted by multiple quantum wells (MQWs) and metasurfaces supporting collective resonances that result from the coupling of localized resonances in nanoparticles throughout the array. We implemented a hexagonal diffraction lattice of resonant Al and SiO<sub>2</sub> nanoparticles in LED devices to achieve reshaping of the far-field electroluminescence, thus demonstrating light beam control capabilities on these emitters. To expand and validate the proposed approach for small LED devices (even at the sub-micrometer scale), we integrate a subdiffraction lattice of Al nanoparticles into the device's architecture. Implementing the proposed design allows us to control the generated light and achieve enhanced far-field emission.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"63"},"PeriodicalIF":0.0,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972285/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143789487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chong Zhao, Enze Cui, Shiyue Zou, Guang Yang, Haifeng Zhao, Qiang Sheng, Lu Zhang, Hongwei Guo, Rongqiang Liu, Guangheng Zhao, Ke Wang
{"title":"One-degree-of-freedom flat-foldable thick-panel origami-kirigami structures: modular arrays and closed polyhedra.","authors":"Chong Zhao, Enze Cui, Shiyue Zou, Guang Yang, Haifeng Zhao, Qiang Sheng, Lu Zhang, Hongwei Guo, Rongqiang Liu, Guangheng Zhao, Ke Wang","doi":"10.1038/s44172-025-00397-3","DOIUrl":"10.1038/s44172-025-00397-3","url":null,"abstract":"<p><p>Origami structures hold promising potential in space applications, such as ultra-large-area solar arrays, deployable space stations, and extra-terrestrial modular foldable buildings. However, the development of thick-panel origami structures has been limited, relying on a few typical origami patterns without a comprehensive design theory for multi-crease, multi-vertex thick-panel configurations. Additionally, realizing closed Polyhedra in thick-panel origami presents substantial challenges. Here, we introduce a design methodology inspired by origami and kirigami principles for one-degree-of-freedom (one-DOF) flat-foldable thick-panel origami-kirigami structures, including modular scalable arrays and closed polyhedral structures. The thick-panel origami-kirigami modular scalable arrays incorporate mixed four-crease vertices and (2n + 4)-crease vertices, enabling one-DOF flat-foldability and modular expansion of thick-panel units. The thick-panel origami-kirigami closed polyhedral structures, including tetrahedrons, square pyramids and triangular prisms, possess one-DOF inward-flat-foldability and structural closure after unfolding. This novel design framework for thick-panel origami-kirigami structures is capable of structural design from centimeter to meter scale, validated by kinematic analysis and prototype experiments.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"62"},"PeriodicalIF":0.0,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961596/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143765947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Owen Dillon, Benjamin Lau, Shalini K Vinod, Paul J Keall, Tess Reynolds, Jan-Jakob Sonke, Ricky T O'Brien
{"title":"Real-time spatiotemporal optimization during imaging.","authors":"Owen Dillon, Benjamin Lau, Shalini K Vinod, Paul J Keall, Tess Reynolds, Jan-Jakob Sonke, Ricky T O'Brien","doi":"10.1038/s44172-025-00391-9","DOIUrl":"10.1038/s44172-025-00391-9","url":null,"abstract":"<p><p>High quality imaging is required for high quality medical care, especially in precision applications such as radiation therapy. Patient motion during image acquisition reduces image quality and is either accepted or dealt with retrospectively during image reconstruction. Here we formalize a general approach in which data acquisition is treated as a spatiotemporal optimization problem to solve in real time so that the acquired data has a specific structure that can be exploited during reconstruction. We provide results of the first-in-world clinical trial implementation of our spatiotemporal optimization approach, applied to respiratory correlated 4D cone beam computed tomography for lung cancer radiation therapy (NCT04070586, ethics approval 2019/ETH09968). Performing spatiotemporal optimization allowed us to maintain or improve image quality relative to the current clinical standard while reducing scan time by 63% and reducing scan radiation by 85%, improving clinical throughput and reducing the risk of secondary tumors. This result motivates application of the general spatiotemporal optimization approach to other types of patient motion such as cardiac signals and other modalities such as CT and MRI.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"61"},"PeriodicalIF":0.0,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11958730/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143756131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Towards ubiquitous radio access using nanodiamond based quantum receivers.","authors":"Qunsong Zeng, Jiahua Zhang, Madhav Gupta, Zhiqin Chu, Kaibin Huang","doi":"10.1038/s44172-025-00396-4","DOIUrl":"10.1038/s44172-025-00396-4","url":null,"abstract":"<p><p>The development of sixth-generation wireless communication systems demands innovative solutions to address challenges in the deployment of a large number of base stations and the detection of multi-band signals. Quantum technology, specifically nitrogen-vacancy centers in diamonds, offers promising potential for the development of compact, robust receivers capable of supporting multiple users. Here we propose a multiple access scheme using fluorescent nanodiamonds containing nitrogen-vacancy centers as nano-antennas. The unique response of each nanodiamond to applied microwaves allows for distinguishable patterns of fluorescence intensities, enabling multi-user signal demodulation. We demonstrate the effectiveness of our nanodiamonds-implemented receiver by simultaneously transmitting two uncoded digitally modulated information bit streams from two separate transmitters, achieving a low bit error ratio. Moreover, our design supports tunable frequency band communication and reference-free signal decoupling, reducing communication overhead. Furthermore, we implement a miniaturized device comprising all essential components, highlighting its practicality as a receiver serving multiple users simultaneously. This approach enables the integration of quantum sensing technologies into future wireless communication networks.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"60"},"PeriodicalIF":0.0,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11958799/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143756133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}