Fast ground irradiance computations for agrivoltaics via physics-informed deep learning models.

L Kurumundayil, D Burkhardt, L Gfüllner, S J Rupitsch, R Preu, M Berwind, M Demant
{"title":"Fast ground irradiance computations for agrivoltaics via physics-informed deep learning models.","authors":"L Kurumundayil, D Burkhardt, L Gfüllner, S J Rupitsch, R Preu, M Berwind, M Demant","doi":"10.1038/s44172-025-00523-1","DOIUrl":null,"url":null,"abstract":"<p><p>Developing photovoltaic tracker algorithms for bifacial solar modules in agrivoltaic systems requires computationally intensive raytracing simulations to accurately quantify irradiation. Sunlight distribution on ground and module levels is essential for optimizing the setup and operation of tiltable PV systems, maximizing crop and electrical yield under various weather conditions and tilt configurations. We introduce a deep learning-based surrogate model that computes ground-level irradiation in a complex agrivoltaic scene with PV tracking. The surrogate model is physics-informed since the training data includes raytracing outputs based on real weather data. It computes the ground irradiance map based on direct normal irradiance, diffuse horizontal irradiance, solar position, and system geometry in just 3ms, four orders of magnitude faster than standard raytracing. The presented encoding of the 3D scene allows the calculation of ground irradiance using generative regression models. Our surrogate model allows on-the-fly raytracing calculations for edge computing-based PV tracker applications, where computational efforts must be minimized to enable efficient management and optimization of PV systems.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"173"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00523-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Developing photovoltaic tracker algorithms for bifacial solar modules in agrivoltaic systems requires computationally intensive raytracing simulations to accurately quantify irradiation. Sunlight distribution on ground and module levels is essential for optimizing the setup and operation of tiltable PV systems, maximizing crop and electrical yield under various weather conditions and tilt configurations. We introduce a deep learning-based surrogate model that computes ground-level irradiation in a complex agrivoltaic scene with PV tracking. The surrogate model is physics-informed since the training data includes raytracing outputs based on real weather data. It computes the ground irradiance map based on direct normal irradiance, diffuse horizontal irradiance, solar position, and system geometry in just 3ms, four orders of magnitude faster than standard raytracing. The presented encoding of the 3D scene allows the calculation of ground irradiance using generative regression models. Our surrogate model allows on-the-fly raytracing calculations for edge computing-based PV tracker applications, where computational efforts must be minimized to enable efficient management and optimization of PV systems.

开发用于农业光伏系统中双面太阳能模块的光伏跟踪算法需要计算密集的光线跟踪模拟来准确量化辐射。地面和组件层的阳光分布对于优化可倾斜光伏系统的设置和运行,在各种天气条件和倾斜配置下最大化作物和电力产量至关重要。我们引入了一种基于深度学习的代理模型,用于计算具有PV跟踪的复杂农业光伏场景中的地面辐射。由于训练数据包括基于真实天气数据的光线追踪输出,因此代理模型具有物理信息。它基于直接法向辐照度、漫射水平辐照度、太阳位置和系统几何形状计算地面辐照度图,只需3毫秒,比标准光线追踪快4个数量级。所提出的三维场景编码允许使用生成回归模型计算地面辐照度。我们的代理模型允许基于边缘计算的光伏跟踪器应用进行实时光线跟踪计算,在这些应用中,必须将计算工作量最小化,以实现光伏系统的有效管理和优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信