Lindy K Jang, Jesse T Ahlquist, Congwang Ye, Juliana Trujillo, Michael Triplett, Monica L Moya, Claire Robertson, William Hynes, Elisa M Wasson
{"title":"Rapid curing dynamics of PEG-thiol-ene resins allow facile 3D bioprinting and in-air cell-laden microgel fabrication.","authors":"Lindy K Jang, Jesse T Ahlquist, Congwang Ye, Juliana Trujillo, Michael Triplett, Monica L Moya, Claire Robertson, William Hynes, Elisa M Wasson","doi":"10.1088/1748-605X/ad8540","DOIUrl":"https://doi.org/10.1088/1748-605X/ad8540","url":null,"abstract":"<p><p>Thiol-norbornene photoclick hydrogels are highly efficient in tissue engineering applications due to their fast gelation, cytocompatibility, and tunability. In this work, we utilized the advantageous features of polyethylene glycol (PEG)-thiol-ene resins to enable fabrication of complex and heterogeneous tissue scaffolds using 3D bioprinting and in-air drop encapsulation techniques. We demonstrated that photoclickable PEG-thiol-ene resins could be tuned by varying the ratio of PEG-dithiol to PEG norbornene to generate a wide range of mechanical stiffness (0.5-12 kPa) and swelling ratios. Importantly, all formulations maintained a constant, rapid gelation time (<0.5 s). We used this resin in biological projection microstereolithography (BioP<i>µ</i>SL) to print complex structures with geometric fidelity and demonstrated biocompatibility by printing cell-laden microgrids. Moreover, the rapid gelling kinetics of this resin permitted high-throughput fabrication of tunable, cell-laden microgels in air using a biological in-air drop encapsulation apparatus (BioIDEA). We demonstrated that these microgels could support cell viability and be assembled into a gradient structure. This PEG-thiol-ene resin, along with BioP<i>µ</i>SL and BioIDEA technology, will allow rapid fabrication of complex and heterogeneous tissues that mimic native tissues with cellular and mechanical gradients. The engineered tissue scaffolds with a controlled microscale porosity could be utilized in applications including gradient tissue engineering, biosensing, and<i>in vitro</i>tissue models.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142712067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mesalamine loaded ethyl cellulose nanoparticles: optimization and<i>in vivo</i>evaluation of antioxidant potential in ulcerative colitis.","authors":"Preety Gautam, Md Habban Akhter, Anubhav Anand, Safia Obaidur Rab, Mariusz Jaremko, Abdul-Hamid Emwas","doi":"10.1088/1748-605X/ad920e","DOIUrl":"10.1088/1748-605X/ad920e","url":null,"abstract":"<p><p>This study aimed to optimize mesalamine (MES)-nanoparticles (NPs) using Box Behnken Design and investigate its<i>in vivo</i>antioxidant potential in colon drug targeting. The formulation was prepared using oil/water (O/W) emulsion solvent evaporation technique for time dependent colonic delivery. The optimal formulation with the following parameters composition was selected: polymer concentration (% w/w) (A) = 0.63, surfactant concentration (% w/w) (B) = 0.71, sonication duration (min) (C) = 6. The outcomes showed that ethyl cellulose (EC) NP containing MES has particles size of 142 ± 2.8 nm, zeta potential (ZP) of -24.8 ± 2.3 mV, % EE of 87.9 ± 1.6%, and PDI of 0.226 ± 0.15. Scanning electron microscopy revealed NPs has a uniform and spherical shape. The<i>in-vitro</i>release data disclosed that the EC NPs containing MES showed bursts release of 52% ± 1.6% in simulated stomach media within 2 h, followed by a steady release of 93% ± 2.9% in simulated intestinal fluid that lasted for 48 h. The MES release from NP best match with the Korsmeyer-Peppas model (<i>R</i><sup>2</sup>= 0.962) and it followed Fickian diffusion case I release mechanism. The formulation stability over six-months at 25 °C ± 2 °C with 65% ± 5% relative humidity, and 40 °C ± 2 °C with 75% ± 5% relative humidity showed no significant changes in colour, EE, particle sizes and ZP. As per<i>in vivo</i>results, MES-NP effectively increased glutathione, SOD level and reduces the LPO level as compared to other treatment groups. The findings hold promise that the developed formulation can suitably give in ulcerative colitis.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiahui Chen, Yuanchao Li, Xiaoqi Dai, Mei Huang, Meiling Chen, Yifei Zhan, Yaochuan Guo, Yuxuan Du, Liuqiang Li, Meiqin Liu, Maofang Huang, Jun Bian, Dehui Lai
{"title":"Low-intensity pulsed ultrasound promotes cell viability of hUSCs in volumetric bioprinting scaffolds via PI3K/Akt and ERK1/2 pathways.","authors":"Jiahui Chen, Yuanchao Li, Xiaoqi Dai, Mei Huang, Meiling Chen, Yifei Zhan, Yaochuan Guo, Yuxuan Du, Liuqiang Li, Meiqin Liu, Maofang Huang, Jun Bian, Dehui Lai","doi":"10.1088/1748-605X/ad920f","DOIUrl":"10.1088/1748-605X/ad920f","url":null,"abstract":"<p><p>The study aimed to investigate the impact of low-intensity pulsed ultrasound (LIPUS) on human urinary-derived stem cells (hUSCs) viability within three-dimensional (3D) cell-laden gelatin methacryloyl (GelMA) scaffolds. hUSCs were integrated into GelMA bio-inks at concentrations ranging from 2.5% to 10% w/v and then bioprinted using a volumetic-based method. Subsequent exposure of these scaffolds to LIPUS under varying parameters or sham irradiation aimed at optimizing the LIPUS treatment. Assessment of hUSCs viability employed Cell Counting Kit-8 (CCK8), cell cycle analysis, and live&dead cell double staining assays. Additionally, Western blot analysis was conducted to determine protein expression levels. With 3D bio-printed cell-laden GelMA scaffolds successfully constructed, LIPUS promoted the proliferation of hUSCs. Optimal LIPUS conditions, as determined through CCK8 and live&dead cell double staining assays, was achieved at a frequency of 1.5 MHz, a spatial-average temporal-average intensity (ISATA) of 150 mW cm<sup>-2</sup>, with an exposure duration of 10 min per session administered consecutively for two sessions. LIPUS facilitated the transition from G0/G1 phase to S and G2/M phases and enhanced the phosphorylation of ERK1/2 and PI3K-Akt. Inhibition of ERK1/2 (U0126) and PI3K (LY294002) significantly attenuated LIPUS-induced phosphorylation of ERK1/2 and PI3K-Akt respectively, both of which decreased the hUSC viability within 3D bio-printed GelMA scaffolds. Applying a LIPUS treatment at an ISATA of 150 mW cm<sup>-2</sup>promotes the growth of hUSCs within 3D bio-printed GelMA scaffolds through modulating ERK1/2 and PI3K-Akt signaling pathways.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fátima Gomez Gramajo, María A Rivoira, Valeria Rodríguez, Gabriela Vargas, Rosa Vera Mesones, María P Zago, Aldo R Boccaccini, Alejandro Gorustovich
{"title":"Lithium-containing 45S5 Bioglass-derived glass-ceramics have antioxidant activity and induce new bone formation in a rat preclinical model of type 1 diabetes mellitus.","authors":"Fátima Gomez Gramajo, María A Rivoira, Valeria Rodríguez, Gabriela Vargas, Rosa Vera Mesones, María P Zago, Aldo R Boccaccini, Alejandro Gorustovich","doi":"10.1088/1748-605X/ad8c8b","DOIUrl":"https://doi.org/10.1088/1748-605X/ad8c8b","url":null,"abstract":"<p><p>Diabetes mellitus (DM) has been associated with complications that affect the skeletal system, such as alterations in bone repair, osteoporosis, and an increased risk of fractures. In this context, the use of biomaterials able to promote osteogenic differentiation and, at the same time, limit the oxidative stress induced by DM offers a novel perspective to ensure the repair of diabetic bone tissue. Since lithium (Li) has been recently identified as a biologically active ion with osteogenic and antioxidant properties, the localized and controlled release of Li ions from bioactive glass-ceramic materials represents a promising therapeutic alternative for the treatment of bone lesions in DM. Thus, the aim of this study was to evaluate the potential osteogenic and antioxidant effects of glass-ceramic microparticles derived from a 45S5-type bioactive glass (Bioglass) containing (% by weight) 45% SiO<sub>2</sub>, 24.5% Na<sub>2</sub>O, 24.5% CaO, and 6% P<sub>2</sub>O<sub>5</sub>, in which Na<sub>2</sub>O was partially substituted by 5% of Li<sub>2</sub>O (45S5.5Li), in an experimental model of type 1 DM (DM1). The results obtained demonstrate, for the first time, that both 45S5 and 45S5.5Li glass-ceramic microparticles possess antioxidant activity and stimulate bone formation<i>in vivo</i>both under physiological conditions and under experimental DM1 in rats. In this sense, they would have potential application as inorganic osteogenic agents in different strategies of bone tissue regenerative medicine.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142677728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jay Hind Rajput, Varun Rathi, Anwesha Mukherjee, Pankaj Yadav, Tarush Gupta, Bodhisatwa Das, Atharva Poundarik
{"title":"A novel polyurethane-based silver foam dressing with superior antimicrobial action for management of infected chronic wounds.","authors":"Jay Hind Rajput, Varun Rathi, Anwesha Mukherjee, Pankaj Yadav, Tarush Gupta, Bodhisatwa Das, Atharva Poundarik","doi":"10.1088/1748-605X/ad8fe8","DOIUrl":"10.1088/1748-605X/ad8fe8","url":null,"abstract":"<p><p>Wound healing is a complex and dynamic process supported by several cellular events. Around 13 million individuals globally suffer from chronic wounds yearly, for which dressings with excellent antimicrobial activity and cell viability (>70%, as per ISO 10993) are needed. Excessive use of silver can cause cytotoxicity and has been linked to increasing antimicrobial resistance. In this study, HDI Ag foam was synthesized using a safer hexamethylene diisocyanate-based prepolymer (HDI prepolymer) instead of commonly used diisocyanates like TDI and MDI and substantially lower Ag content than that incorporated in other Ag foams. In vitro characteristics of the HDI Ag foam were evaluated in comparison with leading clinically used foam-based dressings. All dressings underwent a detailed characterization in accordance with industrially accepted BS EN 13726 standards. The HDI Ag foam exhibited highest antimicrobial efficiency against<i>S. aureus</i>and<i>P. aeruginosa</i>(static condition), with the lowest amount of Ag (0.2 wt%) on the wound contact surface. The extracts from HDI Ag foam showed superior cell viability (>70%), when tested on the L929 mouse fibroblast cell line. Measurements of moisture vapor transmission, fluid handling, physico-chemical and mechanical properties ensured that the HDI foam was clinically acceptable for chronic wound patients.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication of a natural nanocomposite from Syzygium cumini and squid bone waste decorated with Cu-Nps for simultaneous use in the triple method of photodynamic/photothermal/chemotherapy.","authors":"Mohsen Mehrabi, Ali Shaygan Shirazi, Fatemeh Gharibzadeh, Hossein Shirkani, Amirhossein Ghaedi, Arezoo Khoradmehr","doi":"10.1088/1748-605X/ad909e","DOIUrl":"10.1088/1748-605X/ad909e","url":null,"abstract":"<p><p>This work reports a new nano platform made from natural materials for phototherapy (PT) applications. For this purpose, calcium carbonate nanoparticles (NPs) derived from Persian Gulf squid bones as a drug carrier, Syzygium cumini (dye extracted from the fruit of the Persian Gulf trees) as a photosensitizer, and Doxorubicin as a chemotherapy (CHT) drug have been used. In addition, copper NPs were added to the above nanocomposition to increase the efficiency of photothermal (PTT) treatment. For PT, samples were irradiated by an 808 nm laser (1 W cm<sup>-2</sup>). The results show that nanocomposites play an influential role in the reactive oxygen species process, and an increase of 21 degrees in temperature during 15 min of laser radiation is effective in photodynamic (PDT)/PTT therapy. The drug loading capacity of the nanocomposite was calculated as 49%. This new nanocomposite for simultaneous PDT/PTT/CHT holds great promise for future cancer treatment due to its excellent potential in treatment and reduced systemic toxicity.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ping Li, Ding Tan, Aihua Su, Xingliang Xiong, Shasha Gao, Haiyang Zhang, Jiaqi Yang, Jie Jian, Jun Zheng, Qifeng Jiang
{"title":"Gallic acid functionalized silk fibroin/gelatin composite wound dressing for enhanced wound healing.","authors":"Ping Li, Ding Tan, Aihua Su, Xingliang Xiong, Shasha Gao, Haiyang Zhang, Jiaqi Yang, Jie Jian, Jun Zheng, Qifeng Jiang","doi":"10.1088/1748-605X/ad8c09","DOIUrl":"10.1088/1748-605X/ad8c09","url":null,"abstract":"<p><p>As the incidence of chronic wounds increases, the requirements for wound dressings are rising. The specific aim of this study is to propose a novel gallic acid (GA) functionalized silk fibroin (SF) and gelatin (Gel) composite wound dressing in which GA is used as an antibacterial and wound healing substance. Via electrospinning, SF, Gel, and GA mixed solutions could be conveniently fabricated into a composite nanofiber mat (SF-Gel-GA), consisting of uniform fibers with an average diameter around 134.57 ± 84 nm. The internal mesh structure of SF-Gel-GA provides sufficient drug loading capacity, proper moisture permeability, and proper degradation rate. SF-Gel-GA presents excellent biocompatibility. NIH-3T3 fibroblast cells could adhere and spread stably on the SF-Gel-GA surface with slightly promoted proliferation. In the presence of SF-Gel-GA, the growth of both Gram-positive and Gram-negative bacteria, including<i>Staphylococcus aureus</i>and<i>Pseudomonas aeruginosa</i>, is significantly inhibited in both plate and suspension cultures. A cutaneous excisional mouse wound model proves the efficient ability of SF-Gel-GA to promote wound healing. Compared with pure SF dressing and commercial Tegaderm Hydrocolloid<sup>3M</sup>dressing, the wound closure rate with SF-Gel-GA treatment is significantly improved. The histological assessments further demonstrate SF-Gel-GA could facilitate collagen deposition, neovascularization, and epithelialization at wound sites to promote wound healing. In conclusion, a novel SF-Gel-GA composite wound dressing with efficient wound healing activities have been developed for chronic wound treatment with broad healing potential.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthias W Gielisch, Daniel G E Thiem, Ulrike Ritz, Christoph Bösing, Bilal Al-Nawas, Peer W Kämmerer
{"title":"Assessing cytotoxicity: a comparative analysis of biodegradable and conventional 3D-printing materials post-steam sterilization for surgical guides.","authors":"Matthias W Gielisch, Daniel G E Thiem, Ulrike Ritz, Christoph Bösing, Bilal Al-Nawas, Peer W Kämmerer","doi":"10.1088/1748-605X/ad8c8a","DOIUrl":"https://doi.org/10.1088/1748-605X/ad8c8a","url":null,"abstract":"<p><p><i>Introduction.</i>Ecological concerns and the depletion of petroleum resources have driven the exploration of biodegradable 3D-printing materials derived from bio-renewable sources, such as polylactic acid (PLA) and polyhydroxyalkanoates (PHA). This study aimed to compare the potential cytotoxic effects of a biodegradable PLA/PHA blend filament, a conventional photopolymer (MED610), and a combination of MED610 with a support material (SUP705) before and after steam sterilization in vitro, with a focus on their application in the production of surgical guides.<i>Materials and Methods.</i>PLA/PHA, MED610, and SUP705 (both in their pure and steam-sterilized forms;<i>n</i>= 6 per group) were assessed for their cytotoxic effects on human fibroblasts using the neutral red uptake assay. Positive controls included zinc diethyldithiocarbamate and zinc dibutyldithiocarbamate, while high-density polyethylene served as a negative control. A stock solution of the extraction medium was used as the vehicle control (VC).<i>Results.</i>Significant differences in cell viability were observed between pure PLA/PHA (1.2 ± 0.24) and MED610 (0.94 ± 0.08) (<i>p</i>= 0.005). However, both materials exhibited non-cytotoxicity, with cell viability exceeding 70% compared to VCs. SUP705 (0.58 ± 0.42) demonstrated significantly reduced cell viability compared to PLA/PHA (<i>p</i>= 0.001) and MED610 (<i>p</i>= 0.007). After steam sterilization, no significant difference in cell viability was noted between MED610 (1.0 ± 0.08) and PLA/PHA (1.2 ± 0.25) (<i>p</i>= 0.111). While both materials remained non-cytotoxic after sterilization, SUP705 (0.60 ± 0.45) exhibited cytotoxic effects compared to MED610 (<i>p</i>= 0.006) and PLA/PHA (<i>p</i>< 0.001). Steam sterilization did not induce significant cytotoxic effects in the investigated materials (<i>p</i>= 0.123).<i>Conclusion.</i>Pure and steam-sterilized PLA/PHA and MED610 were not cytotoxic, supporting their potential use in the production of surgical guides. However, the observed cytotoxicity of SUP705 suggests caution in scenarios requiring sterile conditions, as the removal of support material from complex printed parts may be challenging. The consideration of PLA/PHA is recommended in such settings to ensure biocompatibility.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142633782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of ultraviolet treatment on soft tissue healing and bacterial attachment to titania-coated zirconia.","authors":"Shuang Tang, Jiebing Zhang, Ping Ma, Zutai Zhang","doi":"10.1088/1748-605X/ad8827","DOIUrl":"10.1088/1748-605X/ad8827","url":null,"abstract":"<p><p>Zirconia is the most promising implant abutment material due to its excellent aesthetic effect, good biocompatibility and corrosion resistance. To obtain ideal soft tissue sealing, the implant abutment surface should facilitate cell adhesion and inhibit bacterial colonization. In this study, pre-sintered zirconia was placed in a suspension of titania (TiO<sub>2</sub>) and zirconium oxychloride (ZrOCl<sub>2</sub>) and heated in a water bath for dense sintering. A titania coating was prepared on the zirconia surface and subjected to UV irradiation. The surface morphology, elemental composition and chemical state of each group of samples were analyzed by scanning electron microscope, x-ray energy spectrometer, x-ray photoelectron spectroscopy and x-ray diffraction. The responses of human gingival fibroblasts (HGFs) and common oral pathogens<i>Streptococcus mutans</i>(<i>S. mutans</i>) and<i>Porphyromonas gingivalis</i>(<i>P. gingivalis</i>) to modified zirconia were systematically assessed. Our findings demonstrated that the surface of titania-coated zirconia after UV irradiation produced a large number of hydroxyl groups, and its hydrophilicity was significantly improved. Meanwhile, the UV irradiation also greatly removed the hydrocarbon contaminants on the surface of the titania-coated zirconia. The UV-treated titania coating significantly promoted the proliferation, spreading, and up-regulation of adhesion-related genes and proteins of HGFs. Furthermore, the titania coating irradiated with UV could reduce the adhesion, colonization and metabolic activity of<i>S. mutans</i>and<i>P. gingivalis</i>. Therefore, UV irradiation of titania-coated zirconia can promote the biological behavior of HGFs and exert a significant antibacterial effect, which has broad clinical application prospects for improving soft tissue integration around zirconia abutments.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruya Zhang, Charles Brooker, Laura L E Whitehouse, Neil H Thomson, David Wood, Giuseppe Tronci
{"title":"Mechanical and suture-holding properties of a UV-cured atelocollagen membrane with varied crosslinked architecture.","authors":"Ruya Zhang, Charles Brooker, Laura L E Whitehouse, Neil H Thomson, David Wood, Giuseppe Tronci","doi":"10.1088/1748-605X/ad8828","DOIUrl":"10.1088/1748-605X/ad8828","url":null,"abstract":"<p><p>The mechanical competence and suturing ability of collagen-based membranes are paramount in guided bone regeneration (GBR) therapy, to ensure damage-free implantation, fixation and space maintenance<i>in vivo</i>. However, contact with the biological medium can induce swelling of collagen molecules, yielding risks of membrane sinking into the bone defect, early loss of barrier function, and irreversibly compromised clinical outcomes. To address these challenges, this study investigates the effect of the crosslinked network architecture on both mechanical and suture-holding properties of a new atelocollagen (AC) membrane. UV-cured networks were obtained via either single functionalisation of AC with 4-vinylbenzyl chloride (4VBC) or sequential functionalisation of AC with both 4VBC and methacrylic anhydride. The wet-state compression modulus (<i>E</i><sub>c</sub>) and swelling ratio (SR) were significantly affected by the UV-cured network architecture, leading up to a three-fold reduction in SR and about two-fold increase in<i>E</i><sub>c</sub>in the sequentially functionalised, compared to the single-functionalised, samples. Electron microscopy, dimensional analysis and compression testing revealed the direct impact of the ethanol series dehydration process on membrane microstructure, yielding densification of the freshly synthesised porous samples and a pore-free microstructure with increased<i>E</i><sub>c</sub>. Nanoindentation tests via spherical bead-probe atomic force microscopy (AFM) confirmed an approximately two-fold increase in median (interquartile range (IQR)) elastic modulus in the sequentially functionalised (<i>E</i><sub>AFM</sub>= 40 (13) kPa), with respect to single-functionalised (<i>E</i><sub>AFM</sub>= 15 (9) kPa), variants. Noteworthy, the single-functionalised, but not the sequentially functionalised, samples displayed higher suture retention strength (SRS = 28 ± 2-35 ± 10 N∙mm<sup>-1</sup>) in both the dry state and following 1 h in phosphate buffered saline (PBS), compared to Bio-Gide® (SRS: 6 ± 1-14 ± 2 N∙mm<sup>-1</sup>), while a significant decrease was measured after 24 h in PBS (SRS= 1 ± 1 N∙mm<sup>-1</sup>). These structure-property relationships confirm the key role played by the molecular architecture of covalently crosslinked collagen, aimed towards long-lasting resorbable membranes for predictable GBR therapy.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142482218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}