Aleksandra A Golebiowska, Mingyang Tan, Anson Wk Ma, Syam P Nukavarapu
{"title":"用于骨软骨移植发育的脱细胞软骨组织生物链接配方。","authors":"Aleksandra A Golebiowska, Mingyang Tan, Anson Wk Ma, Syam P Nukavarapu","doi":"10.1088/1748-605X/ada59d","DOIUrl":null,"url":null,"abstract":"<p><p>Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration. The biomaterial was prepared through decellularization and solubilization of articular cartilage. The effects of two different viscosity modifiers, xanthan gum and Laponite®, and the introduction of a secondary photo-crosslinkable component on the rheological behavior and stability were studied. dcECM-Laponite® bioink formulations demonstrated storage modulus (G') ranging from 750 to 4000 Pa, which is three orders of magnitude higher than that of the dcECM-XG bioink formulations. The rheological evaluation of the bioinks demonstrated the tunability of the bioinks in terms of their viscosity and degree of shear thinning, allowing the formulations to be readily extruded during 3D printing. Also, a spreadable ink composition was identified to form a uniform cartilage layer post-printing. The choice of viscosity modifier along with UV cross-linking warrants shape fidelity of the structure post-printing, as well as improvements in the storage and loss moduli. The modified ECM-based bioink also significantly improved the stability and allowed for prolonged and sustained release of loaded growth factors through the addition of Laponite®. The ECM-based bioink supported human bone-marrow derived stromal cell and chondrocyte viability and increased chondrogenic differentiation<i>in vitro</i>. By forming decellularized cartilage ECM biomaterials in a printable and stable bioink form, we develop a 'Cartilage Ink' that can support cartilaginous tissue formation by closely resembling the native cartilage ECM in structure and function.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decellularized cartilage tissue bioink formulation for osteochondral graft development.\",\"authors\":\"Aleksandra A Golebiowska, Mingyang Tan, Anson Wk Ma, Syam P Nukavarapu\",\"doi\":\"10.1088/1748-605X/ada59d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration. The biomaterial was prepared through decellularization and solubilization of articular cartilage. The effects of two different viscosity modifiers, xanthan gum and Laponite®, and the introduction of a secondary photo-crosslinkable component on the rheological behavior and stability were studied. dcECM-Laponite® bioink formulations demonstrated storage modulus (G') ranging from 750 to 4000 Pa, which is three orders of magnitude higher than that of the dcECM-XG bioink formulations. The rheological evaluation of the bioinks demonstrated the tunability of the bioinks in terms of their viscosity and degree of shear thinning, allowing the formulations to be readily extruded during 3D printing. Also, a spreadable ink composition was identified to form a uniform cartilage layer post-printing. The choice of viscosity modifier along with UV cross-linking warrants shape fidelity of the structure post-printing, as well as improvements in the storage and loss moduli. The modified ECM-based bioink also significantly improved the stability and allowed for prolonged and sustained release of loaded growth factors through the addition of Laponite®. The ECM-based bioink supported human bone-marrow derived stromal cell and chondrocyte viability and increased chondrogenic differentiation<i>in vitro</i>. By forming decellularized cartilage ECM biomaterials in a printable and stable bioink form, we develop a 'Cartilage Ink' that can support cartilaginous tissue formation by closely resembling the native cartilage ECM in structure and function.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ada59d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ada59d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decellularized cartilage tissue bioink formulation for osteochondral graft development.
Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration. The biomaterial was prepared through decellularization and solubilization of articular cartilage. The effects of two different viscosity modifiers, xanthan gum and Laponite®, and the introduction of a secondary photo-crosslinkable component on the rheological behavior and stability were studied. dcECM-Laponite® bioink formulations demonstrated storage modulus (G') ranging from 750 to 4000 Pa, which is three orders of magnitude higher than that of the dcECM-XG bioink formulations. The rheological evaluation of the bioinks demonstrated the tunability of the bioinks in terms of their viscosity and degree of shear thinning, allowing the formulations to be readily extruded during 3D printing. Also, a spreadable ink composition was identified to form a uniform cartilage layer post-printing. The choice of viscosity modifier along with UV cross-linking warrants shape fidelity of the structure post-printing, as well as improvements in the storage and loss moduli. The modified ECM-based bioink also significantly improved the stability and allowed for prolonged and sustained release of loaded growth factors through the addition of Laponite®. The ECM-based bioink supported human bone-marrow derived stromal cell and chondrocyte viability and increased chondrogenic differentiationin vitro. By forming decellularized cartilage ECM biomaterials in a printable and stable bioink form, we develop a 'Cartilage Ink' that can support cartilaginous tissue formation by closely resembling the native cartilage ECM in structure and function.