{"title":"人脂肪源性干细胞对去细胞化肌腱切片的反应。","authors":"Xuan Li, Jing Cui, Liang-Ju Ning, Ruo-Nan Hu, Lei-Lei Zhao, Jia-Jiao Luo, Xin-Yue Xie, Yan-Jing Zhang, Jing-Cong Luo, Zheng-Yong Li, Ting-Wu Qin","doi":"10.1088/1748-605X/ada509","DOIUrl":null,"url":null,"abstract":"<p><p>The selection of appropriate cell sources is vital for the regeneration and repair of tendons using stem cell-based approaches. Human adipose-derived stem cells (hADSCs) have emerged as a promising therapeutic strategy for tendon injuries. However, the heterogeneity of hADSCs can lead to inconsistent or suboptimal therapeutic outcomes. In this study, we isolated and identified a tenomodulin (TNMD)-positive subpopulation from hADSCs (TNMD<sup>+</sup>hADSCs) using flow cytometry and then assessed the cellular response of this subpopulation to decellularized tendon slices (DTSs), including cell proliferation, migration, and tenogenic differentiation, using the CCK-8 assay, transwell migration assay, and quantitative real-time polymerase chain reaction. Our findings revealed that TNMD<sup>+</sup>hADSCs maintained the general characteristics of stem cells and exhibited significantly higher expressions of tendon-related markers compared to hADSCs. Importantly, DTSs significantly enhanced the proliferation, migration, and tenogenic differentiation of TNMD<sup>+</sup>hADSCs. This study provides preliminary experimental evidence for the translational application of ADSCs for tendon regeneration and repair.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response of a tenomodulin-positive subpopulation of human adipose-derived stem cells to decellularized tendon slices.\",\"authors\":\"Xuan Li, Jing Cui, Liang-Ju Ning, Ruo-Nan Hu, Lei-Lei Zhao, Jia-Jiao Luo, Xin-Yue Xie, Yan-Jing Zhang, Jing-Cong Luo, Zheng-Yong Li, Ting-Wu Qin\",\"doi\":\"10.1088/1748-605X/ada509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The selection of appropriate cell sources is vital for the regeneration and repair of tendons using stem cell-based approaches. Human adipose-derived stem cells (hADSCs) have emerged as a promising therapeutic strategy for tendon injuries. However, the heterogeneity of hADSCs can lead to inconsistent or suboptimal therapeutic outcomes. In this study, we isolated and identified a tenomodulin (TNMD)-positive subpopulation from hADSCs (TNMD<sup>+</sup>hADSCs) using flow cytometry and then assessed the cellular response of this subpopulation to decellularized tendon slices (DTSs), including cell proliferation, migration, and tenogenic differentiation, using the CCK-8 assay, transwell migration assay, and quantitative real-time polymerase chain reaction. Our findings revealed that TNMD<sup>+</sup>hADSCs maintained the general characteristics of stem cells and exhibited significantly higher expressions of tendon-related markers compared to hADSCs. Importantly, DTSs significantly enhanced the proliferation, migration, and tenogenic differentiation of TNMD<sup>+</sup>hADSCs. This study provides preliminary experimental evidence for the translational application of ADSCs for tendon regeneration and repair.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ada509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ada509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Response of a tenomodulin-positive subpopulation of human adipose-derived stem cells to decellularized tendon slices.
The selection of appropriate cell sources is vital for the regeneration and repair of tendons using stem cell-based approaches. Human adipose-derived stem cells (hADSCs) have emerged as a promising therapeutic strategy for tendon injuries. However, the heterogeneity of hADSCs can lead to inconsistent or suboptimal therapeutic outcomes. In this study, we isolated and identified a tenomodulin (TNMD)-positive subpopulation from hADSCs (TNMD+hADSCs) using flow cytometry and then assessed the cellular response of this subpopulation to decellularized tendon slices (DTSs), including cell proliferation, migration, and tenogenic differentiation, using the CCK-8 assay, transwell migration assay, and quantitative real-time polymerase chain reaction. Our findings revealed that TNMD+hADSCs maintained the general characteristics of stem cells and exhibited significantly higher expressions of tendon-related markers compared to hADSCs. Importantly, DTSs significantly enhanced the proliferation, migration, and tenogenic differentiation of TNMD+hADSCs. This study provides preliminary experimental evidence for the translational application of ADSCs for tendon regeneration and repair.