Bioelectronics in medicine最新文献

筛选
英文 中文
Electrical stimulation–fracture treatment: new insights into the underlying mechanisms 电刺激-骨折治疗:对潜在机制的新见解
Bioelectronics in medicine Pub Date : 2019-03-01 DOI: 10.2217/BEM-2019-0010
M. Bhavsar, L. Leppik, K. M. Oliveira, J. Barker
{"title":"Electrical stimulation–fracture treatment: new insights into the underlying mechanisms","authors":"M. Bhavsar, L. Leppik, K. M. Oliveira, J. Barker","doi":"10.2217/BEM-2019-0010","DOIUrl":"https://doi.org/10.2217/BEM-2019-0010","url":null,"abstract":"","PeriodicalId":72364,"journal":{"name":"Bioelectronics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2217/BEM-2019-0010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45151942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Adding wisdom to 'smart' bioelectronic systems: a design framework for physiologic control including practical examples. 为 "智能 "生物电子系统增添智慧:包括实例在内的生理控制设计框架。
Bioelectronics in medicine Pub Date : 2019-03-01 Epub Date: 2019-05-30 DOI: 10.2217/bem-2019-0008
Aysegul Gunduz, Enrico Opri, Ro'ee Gilron, Vaclav Kremen, Gregory Worrell, Phil Starr, Kent Leyde, Timothy Denison
{"title":"Adding wisdom to 'smart' bioelectronic systems: a design framework for physiologic control including practical examples.","authors":"Aysegul Gunduz, Enrico Opri, Ro'ee Gilron, Vaclav Kremen, Gregory Worrell, Phil Starr, Kent Leyde, Timothy Denison","doi":"10.2217/bem-2019-0008","DOIUrl":"10.2217/bem-2019-0008","url":null,"abstract":"<p><p>This perspective provides an overview of how risk can be effectively considered in physiological control loops that strive for semi-to-fully automated operation. The perspective first introduces the motivation, user needs and framework for the design of a physiological closed-loop controller. Then, we discuss specific risk areas and use examples from historical medical devices to illustrate the key concepts. Finally, we provide a design overview of an adaptive bidirectional brain-machine interface, currently undergoing human clinical studies, to synthesize the design principles in an exemplar application.</p>","PeriodicalId":72364,"journal":{"name":"Bioelectronics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9f/10/EMS107535.PMC7610621.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38886432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vagus nerve stimulation for the treatment of heart failure 迷走神经刺激治疗心力衰竭
Bioelectronics in medicine Pub Date : 2019-03-01 DOI: 10.2217/BEM-2019-0012
Z. Asad, S. Stavrakis
{"title":"Vagus nerve stimulation for the treatment of heart failure","authors":"Z. Asad, S. Stavrakis","doi":"10.2217/BEM-2019-0012","DOIUrl":"https://doi.org/10.2217/BEM-2019-0012","url":null,"abstract":"Heart failure (HF) is one of the most prevalent cardiovascular diseases and is associated with high morbidity and mortality. Mechanistically, HF is characterized by an overactive sympathetic nervous system and parasympathetic withdrawal, and this autonomic imbalance contributes to the progression of the disease. As such, modulation of autonomic nervous system by device-based therapy is an attractive treatment target. In this review, we discuss the role of autonomic nervous system dysfunction in the pathogenesis of HF and present the available evidence regarding vagus nerve stimulation for HF, with special emphasis on optimization of stimulation parameters. Finally, we discuss future avenues of research for neuromodulation in patients with HF.","PeriodicalId":72364,"journal":{"name":"Bioelectronics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2217/BEM-2019-0012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49193179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Removing the need for invasive brain surgery: the potential of stent electrodes 消除对侵入性脑外科手术的需求:支架电极的潜力
Bioelectronics in medicine Pub Date : 2019-03-01 DOI: 10.2217/BEM-2019-0013
N. Opie, T. Oxley
{"title":"Removing the need for invasive brain surgery: the potential of stent electrodes","authors":"N. Opie, T. Oxley","doi":"10.2217/BEM-2019-0013","DOIUrl":"https://doi.org/10.2217/BEM-2019-0013","url":null,"abstract":"Over the last decade, significant advances in brain–machine interfaces have demonstrated that people with paralysis can control assistive technology such as computers, wheelchairs and bionic arms with their minds. However, due to the invasive surgery required to access the brain and implant electrodes, to date, no device has received commercial US FDA approval, and consequently there is no existing solution to return independence and mobility for the hundreds-of-millions of people paralyzed by stroke, spinal cord injury and motor neuron disease. But there is hope. We have developed a minimally invasive brain–machine interface that can access the brain using cortical vessels which mitigates the risks associated with open brain surgery.","PeriodicalId":72364,"journal":{"name":"Bioelectronics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2217/BEM-2019-0013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44552447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Welcome to the 2nd Volume of Bioelectronics in Medicine 欢迎收看《医学生物电子学》第二卷
Bioelectronics in medicine Pub Date : 2019-03-01 DOI: 10.2217/BEM-2018-0013
Alice Bough
{"title":"Welcome to the 2nd Volume of Bioelectronics in Medicine","authors":"Alice Bough","doi":"10.2217/BEM-2018-0013","DOIUrl":"https://doi.org/10.2217/BEM-2018-0013","url":null,"abstract":"","PeriodicalId":72364,"journal":{"name":"Bioelectronics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47639439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid electrochemical device for single-drop point-of-use screening of parathyroid hormone 用于甲状旁腺激素单点使用筛选的快速电化学装置
Bioelectronics in medicine Pub Date : 2019-03-01 DOI: 10.2217/BEM-2019-0011
Ambalika S Tanak, S. Muthukumar, I. Hashim, S. Prasad
{"title":"Rapid electrochemical device for single-drop point-of-use screening of parathyroid hormone","authors":"Ambalika S Tanak, S. Muthukumar, I. Hashim, S. Prasad","doi":"10.2217/BEM-2019-0011","DOIUrl":"https://doi.org/10.2217/BEM-2019-0011","url":null,"abstract":"Aim: Novel electrochemical point-of-use biosensing device for rapid assessment of parathyroid hormone (PTH) levels has been developed. Materials & methods: The analytical nanobiosensor was designed by integrating unique high density semiconducting nanostructured arrays on a flexible sensing surface. Surface modification technique was tailored for enhancing the interaction of nanostructure–biological interface to capture the target PTH level. Results & conclusion: We demonstrate a rapid nanobiosensor to detect PTH in human serum, plasma and whole blood with a limit of detection of 1 pg/ml and a clinically relevant dynamic range from 1 to 1000 pg/ml. This is the first demonstration of detecting PTH as a point-of-use device devoid of sample pretreatment suitable in a surgical setting with high specificity to PTH.","PeriodicalId":72364,"journal":{"name":"Bioelectronics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2217/BEM-2019-0011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41824711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Is vagus nerve stimulation effective in the treatment of drug-resistant epilepsy? 迷走神经刺激对治疗耐药癫痫有效吗?
Bioelectronics in medicine Pub Date : 2018-12-01 DOI: 10.2217/BEM-2019-0004
A. Mertens, P. Boon, K. Vonck
{"title":"Is vagus nerve stimulation effective in the treatment of drug-resistant epilepsy?","authors":"A. Mertens, P. Boon, K. Vonck","doi":"10.2217/BEM-2019-0004","DOIUrl":"https://doi.org/10.2217/BEM-2019-0004","url":null,"abstract":"Epilepsy is one of the most prevalent chronic neurological conditions affecting approximately 0.5–2% of the population worldwide [1] . Patients with epilepsy repeatedly and unexpectedly experience sudden changes in behavior and or consciousness. Epileptic discharges can involve only a part of the brain, causing focal seizures, or the entire brain leading to generalized seizures. First-line treatment comprises pharmacotherapy with one or more anti-epileptic drugs. Several anti-epileptic drugs are currently available with distinct mechanisms of action and side effects. However, for an estimated third of epilepsy patients, seizures remain poorly controlled despite optimal medical management. After failure of at least two anti-epileptic drugs, patients suffer from drug-resistant epilepsy. For these patients, dedicated diagnostic workup in a specialized epilepsy center is warranted and other treatment options should be explored. The most effective treatment option for patients with refractory epilepsy is epilepsy surgery. Following a thorough presurgical evaluation, seizure freedom is obtained in approximately two thirds of patients with mesial temporal lobe epilepsy and half of patients with focal neocortical epilepsy [2] . Patients who are considered unsuitable surgery candidates should be considered for neurostimulation. Several types of neurostimulation have been developed including vagus nerve stimulation (VNS), deep brain stimulation and responsive neurostimulation. Availability may differ by region. Noninvasive neurostimulation techniques are also on the rise, aiming to avoid an invasive procedure and accompanying side effects. Invasive VNS is a neurostimulation therapy which activates vagal nerve fibers in the neck region by means of a helical electrode that is wound around the cervical vagus","PeriodicalId":72364,"journal":{"name":"Bioelectronics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2217/BEM-2019-0004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44638159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Comparing pharmacological and bioelectronic approaches for the treatment of gastrointestinal disorders 药理学和生物电子学治疗胃肠道疾病的方法比较
Bioelectronics in medicine Pub Date : 2018-12-01 DOI: 10.2217/BEM-2019-0009
J. Furness
{"title":"Comparing pharmacological and bioelectronic approaches for the treatment of gastrointestinal disorders","authors":"J. Furness","doi":"10.2217/BEM-2019-0009","DOIUrl":"https://doi.org/10.2217/BEM-2019-0009","url":null,"abstract":"Professor John Furness speaks to Alice Bough, Commissioning Editor. Professor John Furness leads the Digestive Physiology and Nutrition Laboratory at the Florey Institute of Neuroscience and Mental Health and the University of Melbourne, where he has appointments in the Medical and Veterinary and Agricultural Sciences Faculties. His laboratory has worked for many years on the physiology of digestion, particularly its neuronal and endocrine control. A current emphasis of his work is on the relationships between diet, environment and gut health, and their implications for animal production and for human wellbeing. He is also investigating therapies for the treatment of inflammatory bowel disease and the roles of gut hormones. He has worked closely with the pharmaceutical, medical devices and animal production industries. He is one of the most highly cited Australian scientists. Google Scholar (January 2019) gives his h-index as 107, including 40,400 citations overall.","PeriodicalId":72364,"journal":{"name":"Bioelectronics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2217/BEM-2019-0009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45843603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The potential of conductive hydrogel electrodes at the neural interface: an interview with Rylie Green 导电性水凝胶电极在神经界面的潜力:采访Rylie Green
Bioelectronics in medicine Pub Date : 2018-12-01 DOI: 10.2217/BEM-2019-0007
R. Green
{"title":"The potential of conductive hydrogel electrodes at the neural interface: an interview with Rylie Green","authors":"R. Green","doi":"10.2217/BEM-2019-0007","DOIUrl":"https://doi.org/10.2217/BEM-2019-0007","url":null,"abstract":"","PeriodicalId":72364,"journal":{"name":"Bioelectronics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2217/BEM-2019-0007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43682124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stochastic and periodic vagus nerve stimulation: how do they affect the heart? 随机和周期性迷走神经刺激:它们如何影响心脏?
Bioelectronics in medicine Pub Date : 2018-12-01 DOI: 10.2217/BEM-2019-0005
Elizabeth M. Annoni, E. Tolkacheva
{"title":"Stochastic and periodic vagus nerve stimulation: how do they affect the heart?","authors":"Elizabeth M. Annoni, E. Tolkacheva","doi":"10.2217/BEM-2019-0005","DOIUrl":"https://doi.org/10.2217/BEM-2019-0005","url":null,"abstract":"","PeriodicalId":72364,"journal":{"name":"Bioelectronics in medicine","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2217/BEM-2019-0005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46327120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信