{"title":"Preparation of micro-meso-macroporous structured hydrangea-like cobaltous sulfide with sulphur vacancy for high-performance electromagnetic wave absorption","authors":"Hanwen Zhang, Liyuan Liu, Qiuyu Li, Xiubo Xie, Wei Du, Chuanxin Hou","doi":"10.1007/s42114-024-01028-9","DOIUrl":"10.1007/s42114-024-01028-9","url":null,"abstract":"<div><p>Cobaltous sulfide shows good potential as substances to absorb electromagnetic waves (EWs) due to its features of relatively high conductivity, excellent electrocatalytic activity and inexpensive price. However, there are still great challenges to achieve a broad absorption frequency and strong EW absorption capability. Herein, hydrangea-like CoS with micro-meso-macroporous multilamellar intersecting structure was synthesized by an elementary one-pot hydro-thermal synthesis. The uniquely designed morphology and content of sulphur vacancy of CoS was optimized by controlling synthesis time, which proved to effectively modulate the electromagnetic parameters. The optimized electromagnetic wave-absorbing materials (EWAMs) present the satisfactory EW-absorbing ability, including the minimum reflection loss (RL<sub>min</sub>) of − 21.27 dB at a frequency of 12.48 GHz, a maximum effective absorption bandwidth (EAB<sub>max</sub>) of 5.6 GHz at a thickness of 1.9 mm. The superior EW absorbing performance of CoS was thanks to the cooperative effect of impedance-match, dipole polarization, Maxwell–Wagner effect and conductive loss. Furthermore, the radar cross section (RCS) simulation results further proved its dissipation capability of CoS EWAMs in actual application scenarios. This facile structural design strategy provides a new direction for preparation of CoS-based and other EWAMs with high EW-absorbing ability, which possesses extensive their further potential practical application.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenyang Yu, Ming Yang, Jun Yao, Saad Melhi, Mustafa Elashiry, Salah M. El-Bahy, Sicong Tan, Zhigang Li, Shien Huang, Ergude Bao, Hang Zhang
{"title":"Optimization on microchannel structures made of typical materials based on machine learning","authors":"Chenyang Yu, Ming Yang, Jun Yao, Saad Melhi, Mustafa Elashiry, Salah M. El-Bahy, Sicong Tan, Zhigang Li, Shien Huang, Ergude Bao, Hang Zhang","doi":"10.1007/s42114-024-01002-5","DOIUrl":"10.1007/s42114-024-01002-5","url":null,"abstract":"<div><p>With the trend toward miniaturization of functional devices, material preparation and thermal management processes are also limited to small spaces. Microchannels have emerged as an optimal solution for these challenges. Microchannel-based reactors can generate hybrid materials, and the integration of microchannel heat sinks and substrates can control the temperature of high-power devices. The microstructure within microchannels significantly influences fluid flow and heat transfer, impacting the efficiency of both reaction and heat dissipation processes. Pin-fins are widely used microstructures due to their ability to increase heat transfer area and enhance fluid mixing. In order to find the optimal structure of the fins, it is essential to explore a vast parameter space. In this paper, artificial neural network and genetic algorithm are combined to optimize the copper irregular pin–fin microchannels. Initially, a large number of numerical simulations are performed, focusing on adjustable parameters such as fin radii in various directions, while monitoring the heating surface temperature and the pressure drop of the fin section. Then, nearly 2000 sets of accumulated data are used to train the neural network, establishing the relationship between structural and performance parameters. Finally, a genetic algorithm is employed for multi-objective optimization, yielding a Pareto front. The findings reveal that the newly obtained optimized microchannels exhibit superior thermal–hydraulic performance compared to traditional microchannels. The mechanism of heat transfer enhancement in the optimized microchannel has been revealed: the arrangement of asymmetric fins allows for more thorough contact between the fluid and the fins. Based on this rule, the newly designed multi-fin microchannels exhibit better performance under both fixed heat flux and fixed temperature conditions. In addition, doping high thermal conductivity materials into the substrate to form composite materials can significantly improve the heat transfer performance of microchannels, and using materials with different doping ratios in different parts of the microchannel can effectively improve the temperature uniformity of the heating surface. Thus, uniform-temperature microchannels are designed by combining metal materials (such as copper and aluminum) with non-metal materials (like diamond and graphite).</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sustainable poly(lactic acid) transformation: Leveraging agri-food waste—compatibilization strategies nexus for enhanced properties","authors":"Jayven Chee Chuan Yeo, Joseph Kinyanjui Muiruri, Poh Shiun Kenny Lee, Raveenkumar Vijayakumar, Ting Ting Lin, Xikui Zhang, Warintorn Thitsartarn, Nikos Hadjichristidis, Chaobin He, Zibiao Li","doi":"10.1007/s42114-024-00983-7","DOIUrl":"10.1007/s42114-024-00983-7","url":null,"abstract":"<div><p>The paper comprehensively reviews the upcycling and utilization of agri-food loss and wastes (FLWs) in poly(lactic acid) (PLA)-based biocomposites from the perspective of material circularity. The massive volume of unwanted and unvalued FLWs contributed from fruit producers (durian husk, pineapple leaf, orange peel, and apple), post-consumer products (spent coffee ground, sugarcane bagasse, coconut husk, crustacean shells), and agricultural sectors (rick husk, rice straw, wheat straw, and corn stover) is generally discarded and incinerated. Notably, these FLWs can be collected and upcycled into valuable products depending on the final application, endowing them with a meaningful second life. This upcycling approach promotes environment-friendliness and reduces the product’s carbon footprint. However, gaps and challenges in creating high-performance biocomposites remain critical to a translatable product. To address that, this review comprehensively discussed the recent progress and strategies to enhance the compatibility of PLA and the various FLW biocomposites, such as improved processability, well-balanced properties, heat resistance, and increased interfacial adhesion. The overall mechanical, thermal, processability, and biodegradability performances are further examined and elaborated. Furthermore, the current and prospective applications, such as packaging, automotive, construction, and 3D printing of FLWs/PLA products, are discussed. Finally, the prospects and opportunities of these FLWs/PLA biocomposites are shared to give a view into the future.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zeineb Ben Rejeb, Abdelnasser Abidli, Aniss Zaoui, Maryam Fashandi, Ayyoub Selka, Hani E. Naguib, Chul B. Park
{"title":"One-pot synthesis of rationally-designed flexible, robust, and hydrophobic ambient-dried molecularly-bridged silica aerogels with efficient and versatile oil/water separation applications","authors":"Zeineb Ben Rejeb, Abdelnasser Abidli, Aniss Zaoui, Maryam Fashandi, Ayyoub Selka, Hani E. Naguib, Chul B. Park","doi":"10.1007/s42114-024-00969-5","DOIUrl":"10.1007/s42114-024-00969-5","url":null,"abstract":"<p>The implementation of silica aerogels (SAs) in numerous applications remains limited due to their costly fabrication process and poor mechanical properties. In order to address these issues, herein, we report the rational design and synthesis of twistable, stretchable, compressible, and highly hydrophobic bridged SAs (BSAs) through an environmentally friendly one-pot process and cost-effective ambient pressure drying. The green thiol-ene reaction was employed to synthesize bis-silane precursors using different linkers. These molecular spacers influenced the sol–gel process and the resulting BSAs’ physicochemical, morphological, and surface properties, including ultra-low density, high porosity, and large specific surface area. Therefore, comprehensive analyses were conducted to better understand their structure-properties relationship. Owing to the flexible molecular bridges and abundant methyl groups introduced in the silica network, BSAs are mechanically resilient and can withstand 200 cyclic fatigue tests at a compressive strain of 80% without fracture. BSAs also exhibited excellent stretchability, achieving up to 47% elongation at break. Ascribed to the hydrophobic bridges’ segments and methyl groups, BSAs are superoleophilic and highly hydrophobic (water contact angle: up to 146.5°). Squeezable and shapable BSAs provided outstanding oil sorption and (continuous) oil/water separation performances, including fast sorption rate, large capacity, ultrahigh flux, and efficient demulsification. BSAs’ robustness, evidenced by their remarkable recyclability and stability under simulated harsh conditions, demonstrates great potential for large-scale oil spill cleanup operations.</p><p>• Novel, flexible, and hydrophobic molecularly-bridged silica aerogels were prepared via an eco-friendly one-pot approach.</p><p>• Tailorable properties are induced by a rational design of the structure and molecularly-bridged network.</p><p>• Great potential for large-scale and practical oil sorption and oil/water separation applications.</p><p>• Insights into structure-properties-performance relationships are discussed and illustrated.</p>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua Ince, Krishnamurthy Prasad, Karamat Subhani, Alan Duffy, Nisa Salim
{"title":"Liquid crystalline elastomers as artificial muscles and flexible actuators for robotics/hybrid engineered machinery","authors":"Joshua Ince, Krishnamurthy Prasad, Karamat Subhani, Alan Duffy, Nisa Salim","doi":"10.1007/s42114-024-00988-2","DOIUrl":"10.1007/s42114-024-00988-2","url":null,"abstract":"<div><p>Reducing the weight and profile of machinery and robotics is currently a prime challenge for materials scientists and engineers alike. Solving this challenge could lead to an improvement in space travel feasibility, manufacturing capability, and the birth of new medical interventions and technologies altogether. LCEs are currently considered to hold good potential as artificial muscles due to their unique molecular structure. With the recent boom in materials science and the emergence of advanced fabrication techniques, LCE-based artificial muscles/flexible actuators are at the cusp of commercialization. LCEs can now be fabricated into several different forms (films, fibers, and 3D printed arbitrary shapes). Furthermore, LCE artificial muscles fabricated using these advanced techniques can also be functionalized so that they can controllably be triggered into actuating via stimuli such as light or electrical currents. This has led to reports of several LCE-based artificial muscles which boast impressive performance as artificial muscles. For example, recently certain Joule heating LCE fibers can directly be stimulated into actuation via the application of electrical currents and can actuate on sub-second time frames and outperform human skeletal muscles in terms of actuation stress. Given this, whilst currently there are no commercial applications of LCEs as artificial muscles in robotics, we believe that LCEs are poised to soon be directly applicable as artificial muscles in the broader field of robotics, which inspired us to author this review. This review presents an overview of the mechanisms, synthetic methods, and alignment methods for LCEs. In addition, we provide the latest achievements in fabrication techniques and means of inducing/controlling the actuation of LCEs. We do so in the aspiration that this review can bridge the gap that exists between academia and industry on the topic of LCEs.</p><h3>Graphical abstract</h3><p>Illustration of LCEs acting as artificial muscles in robotics.\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-024-00988-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multifunctional CuS/GO heterodimensional structure for microwave absorption, electromagnetic interference shielding, and energy storage device","authors":"Wen-Qiang Cao, Zhan-Zhan Wang, Xiao Wan, Ting-Ting Liu, Chuan-Bao Cao, Mao-Sheng Cao","doi":"10.1007/s42114-024-01007-0","DOIUrl":"10.1007/s42114-024-01007-0","url":null,"abstract":"<div><p>The rapid development of information technology and the continuous advancement of industrialization have made the problems of electromagnetic (EM) pollution and energy shortage more and more prominent, which have become major challenges that need to be solved worldwide. Developing multifunctional EM materials has become a key solution for addressing these issues, advancing sustainable development, and establishing effective environmental protection systems. Herein, we prepare CuS/GO heterodimensional structures with both EM protection and electrochemical energy storage functions. Benefiting from the synergistic effects of the components and structure, the CuS/GO heterodimensional structure exhibits outstanding performance in microwave attenuation and sodium storage applications. The CuS/GO composite with a loading concentration of 55 wt.% achieves highly efficient EM wave absorption of − 62.56 dB, while the 75 wt.% composite demonstrates electromagnetic interference (EMI) shielding performance of more than 50 dB. In addition, in sodium-ion battery applications, the CuS/GO heterodimensional structure maintains a high reversible capacity of 377 mAh·g<sup>−1</sup> after 700 cycles. Importantly, based on this, an integrated multifunctional EM wave recovery device has been developed that can effectively convert harmful EM energy into electrical energy and store it. This provides a groundbreaking innovative strategy for the design of multifunctional devices in the fields of EM pollution control and energy applications.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142451133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel ternary nanocomposites as a powerful catalyst for high-performance all-solid-state asymmetric supercapacitors","authors":"Rozhin Darabi, Najmeh Zare, Hassan Karimi-Maleh, Fatemeh Karimi","doi":"10.1007/s42114-024-00993-5","DOIUrl":"10.1007/s42114-024-00993-5","url":null,"abstract":"<div><p>Supercapacitors are a fundamental technology in electrical energy storage because of their high performance and cycling. In this study, using a conductive type of nanocomposites, we tested electrode designs in the application of supercapacitors, obtaining valuable results in energy capacity and power density. MnO<sub>2</sub>-Fe<sub>2</sub>O<sub>3</sub>/N-doped graphene nanoribbons (MFNGN) were prepared by an efficient multistep approach. The synthesized result demonstrated that the large surface area of the nanocomposite causes faster transfer of ions and electrons and increases the internal electronic fields with interconnecting nanoscale pore channels for ion transport to adjust the electronic structures. High surface area-to-volume ratio also provides numerous active sites for electrochemical reactions. Consequently, surface area makes available active sites for electron transfer process and also improved the electrochemical performance of the electrodes by improving the electron transfer rate charge transfer capacity. The results demonstrated good cycling stability, with 87.56% of the initial capacity retained after 10,000 cycles at 5.0 A·g<sup>−1</sup>. Furthermore, a hybrid supercapacitor that uses the MFNGN as a positive electrode and active carbon (AC) as a negative electrode was created. This combination resulted in an asymmetric supercapacitor (ASC) that exhibited exceptional performance. Specifically, it achieved a remarkable specific capacitance of 770.0 F·g<sup>−1</sup> when subjected to a current density of 1.0.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hongze Ma, Zhengyang Shi, Honghong Yang, Wei Yuan, Gemeng Liang, Jinshuo Zou, Cheng Qian, Zhaocun Shen, Kunyan Sui
{"title":"Flexible multicolor-emitting lanthanide-alginate hybrid fibers with multi-stimuli responsiveness for anti-counterfeiting","authors":"Hongze Ma, Zhengyang Shi, Honghong Yang, Wei Yuan, Gemeng Liang, Jinshuo Zou, Cheng Qian, Zhaocun Shen, Kunyan Sui","doi":"10.1007/s42114-024-01005-2","DOIUrl":"10.1007/s42114-024-01005-2","url":null,"abstract":"<div><p>Information leakage and counterfeiting are critical global issues threatening human security and social stability. Advanced flexible anti-counterfeiting technologies are urgently needed, as flexible wearables are becoming more and more significant. In this study, we report a straightforward and efficient wet spinning technique to prepare lanthanide-alginate hybrid fibers with multicolor-emitting capabilities for flexible anti-counterfeiting. Lanthanide ions are able to coordinate with sodium alginate to endow the hybrid fibers with good molding properties, thermal stability, and homogenicity. These hybrid fibers can emit red, orange, and green fluorescence depending on the ratios of doped lanthanide elements under 254 nm UV light. The fluorescence lifetime of these hybrid fibers is longer than that of commonly used organic dyes. Notably, their fluorescence can be quenched in acidic environments or by Fe<sup>3+</sup> ions, which is ascribed to the weakened coordination strength between 2,2′-bipyridine with the lanthanide elements. More importantly, the hybrid fibers can be woven into various flexible anti-counterfeiting patterns. Our study demonstrates the significant flexible anti-counterfeiting potential of lanthanide-doped fibers due to their low cost, ease of fabrication, and flexibility.</p><h3>Graphical Abstract</h3><p>The multicolor-emitting lanthanide-alginate hybrid fibers with multi-stimuli responsiveness are produced through a simple wet spinning process and can be woven into various patterns for flexible anti-counterfeiting.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nguyen Nguyen, Muzhaozi Yuan, Hanwen Hu, Zhifeng Xiao, Tianzhu Fan, Tian-Hao Yan, Ying Li, Hong‐Cai Zhou, Jean-Philippe Pellois, Ya Wang
{"title":"Computational fluid-particle dynamic model guiding bioengineered magnetic nanomedicine for personalized brain-targeted drug delivery","authors":"Nguyen Nguyen, Muzhaozi Yuan, Hanwen Hu, Zhifeng Xiao, Tianzhu Fan, Tian-Hao Yan, Ying Li, Hong‐Cai Zhou, Jean-Philippe Pellois, Ya Wang","doi":"10.1007/s42114-024-01013-2","DOIUrl":"10.1007/s42114-024-01013-2","url":null,"abstract":"<div><p>Neurodegenerative diseases pose significant challenges to global healthcare, exacerbated by complexities of the central nervous system and blood–brain barrier. While FDA-approved magnetic nanocarriers offer promising solutions for targeted drug delivery, inherent challenges in predicting delivery performance still hinder clinical practice. Existing brain vasculature transport models often lack accuracy in the 3D construction of the brain vasculature network and physiology of blood circulation, limiting progress in targeted drug delivery. This paper introduced the Circle of Willis’s novel computational fluid dynamics framework to address these challenges. Utilizing patient-specific vascular geometries and incorporating complexities of blood circulation, hemodynamics, and the rheology for non-Newtonian fluid effect, our approach provides unprecedented insights into drug carrier dynamics in the mouse brain vasculature. Furthermore, we performed a comparative study simulating the dynamic transport using three types of magnetic nanocarriers—gold-coated superparamagnetic iron oxide (Au-SPIO), hollow-gold nano-shell enclosed superparamagnetic iron oxide (HGNS-SPIO), and metal–organic frameworks loaded with iron oxide (MOF-Fe<sub>3</sub>O<sub>4</sub>)—to predict their transport in adult mice’s brain under magnetic targeting. The simulation was validated by in vivo results by comparing the bioavailability of nanoparticles in different brain regions. Under a non-magnetic field, simulations revealed a capture efficiency of around 10.5% for all three types of nanoparticles, with size-dependent patterns favoring smaller sizes. With the presence of a magnetic field, MOF-Fe3O4 demonstrated the highest capture efficiency with “single magnet” at 11.19%, while Au-SPIO in “linear Halbach array” and MOF-Fe<sub>3</sub>O<sub>4</sub> in “circular Halbach array” layouts reached 10.9%. Finally, we demonstrated high biocompatibility for all three nanocarriers, with no toxicity for Au-SPIO and MOF-Fe<sub>3</sub>O<sub>4</sub> at 40 µg/mL and for HGNS-SPIO at 20 µg/mL. Effective cell uptake was also observed for all three nanocarriers. This comprehensive study addresses critical knowledge gaps, providing insights into the dynamics of magnetic nanocarrier transport within the brain and paving the way for highly effective, personalized therapies for neurological disorders.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 6","pages":""},"PeriodicalIF":23.2,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142443221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyun-Ae Cha, Su-Jin Ha, Min-Gi Jo, Young Kook Moon, Jong-Jin Choi, Byung-Dong Hahn, Cheol-Woo Ahn, Do Kyung Kim
{"title":"Three-dimensional MgO filler networking composites with significantly enhanced thermal conductivity","authors":"Hyun-Ae Cha, Su-Jin Ha, Min-Gi Jo, Young Kook Moon, Jong-Jin Choi, Byung-Dong Hahn, Cheol-Woo Ahn, Do Kyung Kim","doi":"10.1007/s42114-024-01004-3","DOIUrl":"10.1007/s42114-024-01004-3","url":null,"abstract":"<div><p>Recent considerable research efforts have been directed toward optimizing ceramic/polymer composite materials at the design stage, with a focus on enhancing thermal conduction pathways through distinct structures. This study introduces a simple process of adopting the template method followed by sintering to create a lightweight, self-supporting MgO framework with smooth-surfaced, highly thermally conductive MgO spheres. The segregated structure of inorganic ceramic particles significantly reduces thermal resistance and increases the thermal conduction path. Consequently, these composites exhibit notably higher thermal conductivity (6.61 W/mK) at a filler loading of 51.94 vol% compared to those with randomly dispersed particles. Additionally, 20.27 vol% 3D-MgO/epoxy composites with a thermal conductivity of 2.71 W/mK display a relatively low dielectric constant (3.78 at 1 kHz), only slightly higher than pure epoxy (3.39 at 1 kHz) with a thermal conductivity of 0.19 W/mK. This low dielectric constant is advantageous for electronic and electrical engineering applications. The study proposes an effective strategy for using MgO as an alternative to Al<sub>2</sub>O<sub>3</sub> fillers in high-power-density electronic devices, making 3D-MgO/epoxy composites a promising next-generation thermally dissipating material for electronic devices.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 5","pages":""},"PeriodicalIF":23.2,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}