{"title":"纳米多孔/纳米纤维双气凝胶超柔陶瓷防火涂料","authors":"Cong Li, Dizhou Liu, Hongxuan Yu, Han Zhao, Jingran Guo, Chuanyun Song, Yingde Zhao, Jianing Zhang, Yuanpeng Deng, Shixuan Dang, Duola Wang, Jiali Chen, Zhengli Yan, Tiande Lin, Hui Li, Xiang Xu","doi":"10.1007/s42114-025-01416-9","DOIUrl":null,"url":null,"abstract":"<p>Advanced fire protection for infrastructures and facilities requires fireproof coatings that can possess high fire resistance, thermal insulation, flexibility, and durability. Conventional coatings are usually developed by composing inorganic fillers and organic binders, still suffering from limited fireproof effect, severe fracture, and short working life. Here, we report a dual-aerogel design of robust aluminosilicate ceramic coating with natural-dried nanoporous aerogel for thermal insulation and electro-spun nanofibrous aerogel for flexible deformation. The resulting coating, with a thickness of only 3 mm, exhibits a fire superprotection performance with fire resistance up to 1400 °C, thermal conductivity of only 103.55 mW·m<sup>−1</sup>·K<sup>−1</sup> at 1000 °C, hydrophobicity of contact angle up to 154°, and ultraflexibility of a 90° bending angle with 10,000 times of fatigue resistance. This unique dual-aerogel design can well resolve the formidable thermal–mechanical trade-off in fireproof coatings and establish a set of fundamental considerations in material design for fire superprotection.\n</p>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 4","pages":""},"PeriodicalIF":21.8000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-025-01416-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanoporous/nanofibrous dual-aerogel ultraflexible ceramic coatings for fire superprotection\",\"authors\":\"Cong Li, Dizhou Liu, Hongxuan Yu, Han Zhao, Jingran Guo, Chuanyun Song, Yingde Zhao, Jianing Zhang, Yuanpeng Deng, Shixuan Dang, Duola Wang, Jiali Chen, Zhengli Yan, Tiande Lin, Hui Li, Xiang Xu\",\"doi\":\"10.1007/s42114-025-01416-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Advanced fire protection for infrastructures and facilities requires fireproof coatings that can possess high fire resistance, thermal insulation, flexibility, and durability. Conventional coatings are usually developed by composing inorganic fillers and organic binders, still suffering from limited fireproof effect, severe fracture, and short working life. Here, we report a dual-aerogel design of robust aluminosilicate ceramic coating with natural-dried nanoporous aerogel for thermal insulation and electro-spun nanofibrous aerogel for flexible deformation. The resulting coating, with a thickness of only 3 mm, exhibits a fire superprotection performance with fire resistance up to 1400 °C, thermal conductivity of only 103.55 mW·m<sup>−1</sup>·K<sup>−1</sup> at 1000 °C, hydrophobicity of contact angle up to 154°, and ultraflexibility of a 90° bending angle with 10,000 times of fatigue resistance. This unique dual-aerogel design can well resolve the formidable thermal–mechanical trade-off in fireproof coatings and establish a set of fundamental considerations in material design for fire superprotection.\\n</p>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"8 4\",\"pages\":\"\"},\"PeriodicalIF\":21.8000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42114-025-01416-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-025-01416-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-025-01416-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Nanoporous/nanofibrous dual-aerogel ultraflexible ceramic coatings for fire superprotection
Advanced fire protection for infrastructures and facilities requires fireproof coatings that can possess high fire resistance, thermal insulation, flexibility, and durability. Conventional coatings are usually developed by composing inorganic fillers and organic binders, still suffering from limited fireproof effect, severe fracture, and short working life. Here, we report a dual-aerogel design of robust aluminosilicate ceramic coating with natural-dried nanoporous aerogel for thermal insulation and electro-spun nanofibrous aerogel for flexible deformation. The resulting coating, with a thickness of only 3 mm, exhibits a fire superprotection performance with fire resistance up to 1400 °C, thermal conductivity of only 103.55 mW·m−1·K−1 at 1000 °C, hydrophobicity of contact angle up to 154°, and ultraflexibility of a 90° bending angle with 10,000 times of fatigue resistance. This unique dual-aerogel design can well resolve the formidable thermal–mechanical trade-off in fireproof coatings and establish a set of fundamental considerations in material design for fire superprotection.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.