{"title":"Cardiac function of colorectal cancer mice is remotely controlled by gut microbiota: regulating serum metabolites and myocardial cytokines.","authors":"Zhan-Kui Gao, Chao-Yuan Fan, Bo-Wen Zhang, Jia-Xin Geng, Xing Han, Dan-Qi Xu, Muhammad Arshad, Hao-Xuan Sun, Jiong-Yi Li, Xiangyuan Jin, Xiao-Qin Mu","doi":"10.1186/s42523-025-00405-z","DOIUrl":"https://doi.org/10.1186/s42523-025-00405-z","url":null,"abstract":"<p><p>Several studies have indicated that the dysregulation of microbial metabolites and the inflammatory environment resulting from microbial dysbiosis may contribute to the occurrence and progression of cardiovascular diseases. Therefore, restoring the disordered gut microbiota in patients with colorectal cancer by fecal microbiota transplantation (FMT) has the potential to reduce the incidence of cardiac disease. In this study, we identified cardiac dysfunction in azomethane and dextran sodium sulfate-induced colorectal cancer mice. Intestinal microbes from healthy mice were transferred to colorectal cancer mice, which vastly reversed the disorder of the gut microbiota and effectively alleviated cardiac dysfunction. Moreover, FMT regulated the expression of serum metabolites such as uridine triphosphate (UTP), tiamulin, andrographolide, and N-Acetyl-D-glucosamine, as well as cytokines like TGF-β, IRF5, and β-MHC in the heart. These findings uncover that the disturbed gut microbiota causes cardiac dysfunction in colorectal cancer mice by modulating the expression of serum metabolites and cytokines, which could be alleviated by treatment with FMT.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"53"},"PeriodicalIF":4.9,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144188564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal microbiomePub Date : 2025-05-26DOI: 10.1186/s42523-025-00420-0
Alessandra Tancredi, Thomas Matthijs, Eric Cox, Filip Van Immerseel, Evy Goossens
{"title":"From mother to piglet: the lasting influence of the maternal microbiome.","authors":"Alessandra Tancredi, Thomas Matthijs, Eric Cox, Filip Van Immerseel, Evy Goossens","doi":"10.1186/s42523-025-00420-0","DOIUrl":"10.1186/s42523-025-00420-0","url":null,"abstract":"<p><strong>Background: </strong>Given their crucial roles in agriculture and biomedical research, promoting pig health is essential. A balanced gut microbiota is vital for immune development, metabolism and pathogen resistance, and requires optimal initial colonization by beneficial bacteria. This becomes particularly evident during early life stages, like suckling and weaning, where disruptions can lead to long-term health issues. Understanding the factors influencing microbiome development during these phases is fundamental for enhancing pig health. On these basis, rectal swab samples from eighteen sow-piglet pairs were collected at multiple time points from 7 days after birth to 10 days post-weaning, and analyzed through 16S rRNA gene sequencing. This study aims to understand the maternal influence on piglet microbiota development during the suckling-weaning period, exploring microbial diversity, composition and additional influencing factors such as age, piglet and weaning.</p><p><strong>Results: </strong>α diversity significantly increased with piglet age (p < 0.001) and stabilized upon weaning, with maternal influence and differences between individual piglet affecting variability before weaning. Post-weaning α diversity was influenced by the pen environment (contributing to 14.5-16% of the variability between piglets) rather than age. Both the sow (~ 9.6%) and age of the piglets (20-30%) had a significant impact on the microbial β diversity over the entire timeframe. Moreover, at 10 days post-weaning a significant influence of the cage mates on piglets microbial β diversity was observed (~ 24.6%). Source-tracking analysis revealed a significant maternal contribution to piglet microbiome at 7 days (31.68%), which decreased over time but remained at 13.33% post-weaning. Piglet microbiome exhibited consistency across time, with 22.55-61.23% of bacteria retained from previous stages. Cage mates contributed 53.54% to the microbiome at 10 days post-weaning. Additionally, 68.32% of piglets microbiome at 7 days was derived from sources not included in the study, decreasing to 37.6% by 10 days post-weaning. ASV-level analysis showed that the majority of maternally transmitted ASVs pre-weaning persisted until the last time point, with both beneficial bacteria and pathobionts being transmitted.</p><p><strong>Conclusions: </strong>This study highlights the significant influence of maternal microbiota on piglet gut microbiome development, affecting both diversity and composition. Beneficial bacteria are transmitted from mothers to offspring and persist through early developmental stages, thereby emphasizing the long-lasting impact of maternal microbiome and the importance of early microbial colonization for piglet health.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"52"},"PeriodicalIF":4.9,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144152973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal microbiomePub Date : 2025-05-25DOI: 10.1186/s42523-025-00412-0
Ximei Xie, Huan Yang, Xingang Zhao, Li Teng, Yuze Yang, Hailing Luo
{"title":"Potential role of key rumen microbes in regulating host health and growth performance in Hu sheep.","authors":"Ximei Xie, Huan Yang, Xingang Zhao, Li Teng, Yuze Yang, Hailing Luo","doi":"10.1186/s42523-025-00412-0","DOIUrl":"10.1186/s42523-025-00412-0","url":null,"abstract":"<p><strong>Background: </strong>Average daily gain (ADG) is an important component affecting the profitability of sheep. However, research on the relationship between rumen microbes and sheep growth phenotype is still very lacking. Therefore, in this study, 16 Hu sheep were selected from a cohort of 318 sheep assigned to the same feeding and management conditions, and divided into high growth rate (HADG, n = 8) group and low growth rate (LADG, n = 8) group according to the extreme ADG value. Then, the differences in rumen microbes, rumen fermentation and animal immune parameters were further compared between groups to explore the potential role of rumen key microbes in regulating the health and growth performance of Hu sheep hosts.</p><p><strong>Results: </strong>The results showed that specific pathogenic bacteria associated with ADG, including Anaerotruncus, Sediminibacterium and Glaesserella, exhibited significant correlations with interleukin-6 (IL-6) and immunoglobulin G (IgG). These interactions disrupt immune homeostasis in the host, leading to a metabolic prioritization of energy resources toward immune responses, thereby impairing growth and development. Succinivibrio_dextrinosolvens was enriched in HADG sheep and exhibited a significant positive correlation with propionate levels. This promoted propionate production in the rumen, enhancing the metabolic activity of carbohydrate, amino acid and energy metabolism, ultimately contributing to higher ADG in sheep. Importantly, random forest analysis results showed that Succinivibrio_dextrinosolvens could classify sheep into HADG and LADG with a prediction accuracy of 81.2%. Additionally, we identified 34 bacteria belonged to connectors in the HADG co-occurrence network, including Alloprevotella, Phascolarctobacterium, Anaerovibrio, Butyricicoccus, Ruminococcaceae_noname, and Roseburia, etc., which play an important role in the degradation of carbohydrates and convert them into short-chain fatty acids (SCFAs), maintaining rumen health, and modulating inflammation.</p><p><strong>Conclusions: </strong>In summary, key microbes in the rumen affect the overall healthy homeostasis and rumen fermentation of the host, leading to changes in energy utilization, which in turn affects the average daily gain of Hu sheep. Succinivibrio_dextrinosolvens is a promising biomarker for selecting high growth rate sheep in the future. This study provides a new method to manipulate rumen bacteria to improve growth performance in sheep.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"51"},"PeriodicalIF":4.9,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12103811/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144144364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal microbiomePub Date : 2025-05-22DOI: 10.1186/s42523-025-00414-y
Fernanda Cornejo-Granados, Luigui Gallardo-Becerra, Sandra Romero-Hidalgo, Alonso A Lopez-Zavala, Andrés Cota-Huízar, Melany Cervantes-Echeverría, Rogerio R Sotelo-Mundo, Adrian Ochoa-Leyva
{"title":"Host genome drives the microbiota enrichment of beneficial microbes in shrimp: exploring the hologenome perspective.","authors":"Fernanda Cornejo-Granados, Luigui Gallardo-Becerra, Sandra Romero-Hidalgo, Alonso A Lopez-Zavala, Andrés Cota-Huízar, Melany Cervantes-Echeverría, Rogerio R Sotelo-Mundo, Adrian Ochoa-Leyva","doi":"10.1186/s42523-025-00414-y","DOIUrl":"10.1186/s42523-025-00414-y","url":null,"abstract":"<p><strong>Background: </strong>Pacific Whiteleg shrimp (Litopenaeus vannamei) is an important model for breeding programs to improve global aquaculture productivity. However, the interaction between host genetics and microbiota in enhancing productivity remains poorly understood. We investigated the effect of two shrimp genetic lines, Fast-Growth (Gen1) and Disease-Resistant (Gen2), on the microbiota of L. vannamei.</p><p><strong>Results: </strong>Using genome-wide SNP microarray analysis, we confirmed that Gen1 and Gen2 represented distinct genetic populations. After confirming that the rearing pond did not significantly influence the microbiota composition, we determined that genetic differences explained 15.8% of the microbiota variability, with a stronger selective pressure in the hepatopancreas than in the intestine. Gen1, which exhibited better farm productivity, fostered a microbiota with greater richness, diversity, and resilience than Gen2, along with a higher abundance of beneficial microbes. Further, we demonstrated that a higher abundance of beneficial microbes was associated with healthier shrimp vs. diseased specimens, suggesting that Gen1 could improve shrimp's health and productivity by promoting beneficial microbes. Finally, we determined that the microbiota of both genetic lines was significantly different from their wild-type counterparts, suggesting farm environments and selective breeding programs strongly alter the natural microbiome.</p><p><strong>Conclusions: </strong>This study highlights the importance of exploring the hologenome perspective, where integrating host genetics and microbiome composition can enhance breeding programs and farming practices.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"50"},"PeriodicalIF":4.9,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144129652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal microbiomePub Date : 2025-05-14DOI: 10.1186/s42523-025-00409-9
C Purse, A Parker, S A James, D J Baker, C J Moss, R Evans, J Durham, S G P Funnell, S R Carding
{"title":"Intestinal microbiota profiles of captive-bred cynomolgus macaques reveal influence of biogeography and age.","authors":"C Purse, A Parker, S A James, D J Baker, C J Moss, R Evans, J Durham, S G P Funnell, S R Carding","doi":"10.1186/s42523-025-00409-9","DOIUrl":"https://doi.org/10.1186/s42523-025-00409-9","url":null,"abstract":"<p><strong>Background: </strong>Age-associated changes to the intestinal microbiome may be linked to inflammageing and the development of age-related chronic diseases. Cynomolgus macaques, a common animal model in biomedical research, have strong genetic physiological similarities to humans and may serve as beneficial models for the effect of age on the human microbiome. However, age-associated changes to their intestinal microbiome have previously only been investigated in faecal samples. Here, we have characterised and investigated the effects of age in the cynomolgus macaque intestinal tract in luminal samples from both the small and large intestine.</p><p><strong>Results: </strong>Whole metagenomic shotgun sequencing was used to analyse the microbial communities in intestinal content obtained from six different intestinal regions, covering the duodenum to distal colon, of 24 healthy, captive-bred cynomolgus macaques, ranging in age from 4 to 20 years. Both reference-based and assembly-based computational profiling approaches were used to analyse changes to intestinal microbiota composition and metabolic potential associated with intestinal biogeography and age. Reference-based computational profiling revealed a significant and progressive increase in both species richness and evenness along the intestinal tract. The microbial community composition also significantly differed between the small intestine, caecum, and colon. Notably, no significant changes in the taxonomic abundance of individual taxa with age were found except when sex was included as a covariate. Additionally, using an assembly-based computational profiling approach, 156 putative novel bacterial and archaeal species were identified.</p><p><strong>Conclusions: </strong>We observed limited effects of age on the composition of the luminal microbiota in the profiled regions of the intestinal tract except when sex was included as a covariate. The enteric microbial communities of the small and the large intestine were, however, distinct, highlighting the limitations of frequently used faecal microbial profiling as a proxy for the intestinal microbiota. The identification of a number of putative novel microbial taxa contributes to knowledge of the full diversity of the cynomolgus macaque intestinal microbiome.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"47"},"PeriodicalIF":4.9,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12080069/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144081886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal microbiomePub Date : 2025-05-14DOI: 10.1186/s42523-025-00383-2
E L Reinoso-Peláez, F Puente-Sánchez, M Serrano, J H Calvo, M Ramón, M Saura
{"title":"Characterization of bacterial communities of ewe's vaginal tract and its potential impact on reproductive efficiency.","authors":"E L Reinoso-Peláez, F Puente-Sánchez, M Serrano, J H Calvo, M Ramón, M Saura","doi":"10.1186/s42523-025-00383-2","DOIUrl":"https://doi.org/10.1186/s42523-025-00383-2","url":null,"abstract":"<p><p>The success rate of artificial insemination in sheep remains suboptimal, which has led to an emerging interest in the impact of the reproductive tract microbiome on this process. This research aims to identify the ewes' vaginal core bacterial community, examine the factors influencing bacterial composition, and to determine the association between vaginal bacteria and pregnancy success. By using a robust dataset comprising 331 multiparous ewes from three Spanish breeds (Latxa, Manchega, Rasa Aragonesa) across four herds, this study performed the sequencing of the hypervariable regions V3-V4 of the 16S ribosomal RNA gene and the identification of Amplicon Sequence Variants (ASV) to analyze the bacterial community. Our analysis revealed a core bacterial primarily consisting of the genera Streptobacillus, Histophilus, Fusobacterium, Oceanivirga, and Parvimonas. Alpha and beta diversity, as well as Random Forest analysis, identified that herd and breed were the main drivers of bacterial variability. PERMANOVA analysis also showed significant differences in bacterial composition and abundance associated with pregnancy outcomes. Notably, specific ASVs associated with Fusobacterium, Leptotrichia, Histophilus, Escherichia, and Bacteroides were predominantly found in non-pregnant ewes, while genera such as Pseudomonas, Acinetobacter, and Brevundimonas were more abundant in pregnant ewes. This study contributes to the knowledge about the critical roles of specific bacteria in determining reproductive success in sheep and provides novel insights about the importance of different factors involved in the composition of ewes' vaginal bacterial communities.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"48"},"PeriodicalIF":4.9,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12079919/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144082486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temperature-dependent shifts in gut microbiota and metabolome of olive flounder (Paralichthys olivaceus): implications for cold-water aquaculture expansion and probiotic applications.","authors":"Che-Chun Chen, Yu-Ping Chen, Hsiao-Tsu Yang, Yu-Ling Chen, Chen-Wei Wu, Hong-Yi Gong, Yuan-Shing Ho, Ying-Ning Ho","doi":"10.1186/s42523-025-00417-9","DOIUrl":"https://doi.org/10.1186/s42523-025-00417-9","url":null,"abstract":"<p><strong>Background: </strong>In recent years, rising temperatures due to climate change have become significant stressors in aquatic environments, impacting disease incidence, growth, and gut microbiota in fish. Cold-water species, such as the olive flounder (Paralichthys olivaceus), are particularly vulnerable to increasing water temperatures. Despite its economic importance as a species farmed in East Asia, research on temperature-dependent shifts in the gut microbiota and metabolome of olive flounder remains limited. This study investigates the effects of water temperature on the gut microbiota and metabolome of olive flounder using full-length 16 S rRNA sequencing with Oxford Nanopore Technologies and metabolomics analysis with high-resolution liquid chromatography-mass spectrometry (LC-MS). The analysis compares individuals exposed to three water temperatures (18 °C, 22 °C, and 26 °C).</p><p><strong>Results: </strong>Temperature significantly influenced the composition of gut microbiota, with an increase in Gammaproteobacteria abundance at higher temperatures. Potential pathogens such as Vibrio and Photobacterium increased from 22 °C to 26 °C, while Pseudomonas declined, suggesting an elevated risk of pathogen infection at 26 °C. Functional predictions revealed that gut bacteria regulated host metabolism, particularly carbohydrate, amino acid, and lipid pathways. Metabolomic analysis showed reduced levels of polyunsaturated fatty acids (PUFAs) and phosphatidylcholine (PC)-related metabolites at higher temperatures. Notably, the umami flavor-related compound aspartic acid decreased, while the bitter flavor-related compound phenylalanine increased. Correlation analysis identified significant associations between bacterial genera, such as Comamonas,Pseudomonas,Sphingomonas, and Stentotrophomonas (positive correlation), and Legionella and Phaeobacter (negative correlation), with shifts in PUFAs and PC metabolites.</p><p><strong>Conclusions: </strong>This study demonstrates that environmental temperature significantly affects the gut microbiota and muscle metabolites of olive flounder. Higher temperatures diversified gut bacterial communities and altered metabolite profiles, with reductions in PUFAs and PC-related compounds linked to specific bacterial genera. These findings highlight the potential of these bacterial genera as biomarkers or probiotics for improving aquaculture practices and environmental adaptation strategies. By establishing a strong correlation between gut microbiota and muscle metabolites, this research provides insights that could contribute to sustainable flounder farming and enhance resilience to climate change.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"49"},"PeriodicalIF":4.9,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12079817/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144081920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal microbiomePub Date : 2025-05-12DOI: 10.1186/s42523-025-00407-x
X Xie, J K Wang, J X Liu, L L Guan, A L A Neves
{"title":"Temporal microbial colonization on different forages is driven by the rumen environmental conditions.","authors":"X Xie, J K Wang, J X Liu, L L Guan, A L A Neves","doi":"10.1186/s42523-025-00407-x","DOIUrl":"https://doi.org/10.1186/s42523-025-00407-x","url":null,"abstract":"<p><p>The rumen is one of the four compartments of the ruminant stomach and houses a diverse array of anaerobic microbes that play a crucial role in feed digestion and volatile fatty acid (VFA) production. The aim of this study was to explore how two different in vivo rumen environmental conditions, AHR (created from sheep-fed alfalfa hay) and CSR (created from sheep-fed corn stover), affect fiber digestion and rumen bacterial colonization in relation to two types of forage, alfalfa hay (AH) and corn stover (CS). Both AH and CS forages were subjected to in-sacco incubation in AHR and CSR conditions for a period of 48 h. The results revealed that CSR exhibited a less variant pH, lower total VFA concentration, and higher acetate-to-propionate ratio than AHR. CSR significantly enhanced the degradation of neutral detergent fiber and acid detergent fiber in both incubated forages (AH and CS). Although CSR did not improve the degradation of dry matter (DM) or crude protein (CP) on AH, it improved the degradation of DM and CP on CS. Both CS and AH incubated under CSR were found to have a greater abundance of fibrolytic bacteria (e.g., Fibrobacter and Butyrivibrio 2) compared to the same forage incubated under AHR, especially during the initial stages of incubation. However, CS and AH incubated under AHR were colonized by bacteria specialized in breaking down soluble carbohydrates (e.g., Prevotella and Succinivibrio). Compared with AHR, CSR enhanced the degradation rates of both incubated forages (CS and AH). These findings underscore the role of the rumen microenvironment in affecting the composition of adherent microbial communities and enhancing the breakdown of forages. Therefore, optimizing the rumen microenvironment to promote the attachment of fibrolytic bacteria during the early fermentation stages while minimizing hydrogen accumulation to stabilize the pH could lead to improved forage fermentation and animal performance.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"46"},"PeriodicalIF":4.9,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067915/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144043602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal microbiomePub Date : 2025-05-12DOI: 10.1186/s42523-025-00413-z
Germán Plata, Nielson T Baxter, Troy B Hawkins, Lucas Huntimer, Akshitha Nagireddy, Dwi Susanti, James B Reinbold
{"title":"Interactions between time on diet, antibiotic treatment, and liver abscess development on the fecal microbiome of beef cattle.","authors":"Germán Plata, Nielson T Baxter, Troy B Hawkins, Lucas Huntimer, Akshitha Nagireddy, Dwi Susanti, James B Reinbold","doi":"10.1186/s42523-025-00413-z","DOIUrl":"https://doi.org/10.1186/s42523-025-00413-z","url":null,"abstract":"<p><strong>Background: </strong>Liver abscesses caused by polymicrobial infections of the liver are a widespread problem in feedlot cattle production. There are currently no effective methods for the early detection of liver abscesses or to predict antibiotic efficacy for their control. Although gene expression and microbiome differences have been reported in the rumen of abscessed and normal animals, liver abscess biomarkers using less invasive tools can facilitate managing of the disease in the field.</p><p><strong>Results: </strong>Here we report the results of two studies measuring the fecal microbiome composition of steers that did or did not develop liver abscesses, with or without antibiotic treatment, along a 7-month feeding period on a high-concentrate diet. Our results indicate a limited impact of liver abscesses or tylosin on fecal microbiome composition, with time on diet explaining most variance in the fecal microbiome. Interestingly, in both studies, antibiotic treatment led to larger differences in the variability of the fecal microbiomes between abscessed and normal animals compared to controls. These differences were limited to specific sampling times in each of the two studies. Although multiple amplicon sequence variants with differential abundances according to liver abscess state were identified, there was no overlap between the two studies.</p><p><strong>Conclusions: </strong>Our results suggest that the fecal abundance of individual microorganisms may not be a robust predictor of liver abscess susceptibility across sampling times or diet regimes. Fecal biomarkers of liver abscess susceptibility might be developed with a focus on other aspects of the hindgut microbiome, especially for animals receiving preventive antibiotics.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"45"},"PeriodicalIF":4.9,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067690/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144063446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing Holstein steers growth performance: oregano essential oil's impact on rumen development, functionality and microorganism.","authors":"Yongliang Huang, Siyu Cheng, Jinping Shi, Pengjia He, Yue Ma, Ruixin Yang, Xu Zhang, Yongzhi Cao, Zhaomin Lei","doi":"10.1186/s42523-025-00415-x","DOIUrl":"https://doi.org/10.1186/s42523-025-00415-x","url":null,"abstract":"<p><strong>Background: </strong>Dietary supplementation with oregano essential oil (OEO), a natural plant extracts, is an effective and acceptable method to improve growth, beef quantity and quality, but the undergoing mechanism in rumen has not yet been reported in Holstein steers. This study investigated the effects of oregano essential oil (OEO) on growth performance, fermentation parameters, digestive enzymes activity, rumen development and microbiota in Holstein steers. Eighteen steers were randomly divided into two groups (n = 9) and fed either a basal diet (CCK) or the same diet supplemented with 20 g/(d·head) OEO (CEO) for 270 days.</p><p><strong>Results: </strong>OEO increased the rumen contents of volatile fatty acids (VFA, acetate (P = 0.011), propionate (P = 0.008), butyrate (P = 0.018)) and digestive enzymes activity (cellulase (P = 0.018), protease and β-glucosidase (P < 0.001)), and improved rumen development (papillae width (P = 0.008) and micropapillary density (P = 0.001)), which reasons contribute to increase body weight (BW, P = 0.022), average daily gain (ADG, P = 0.021), carcass weight (P = 0.001), dressing percentage (P < 0.001), and net meat production (P = 0.001) of steers. Meanwhile, metagenomic and metabolomic analysis revealed OEO significantly reduced abundance of rumen microorganisms, especially methanogenic archaea and viruses while beneficial bacteria (Bifidobacterium) and virulence factors were not affected. KEGG analysis revealed that OEO significantly reduces the host risk of disease, improves the digestive system, and reduces the energy basic metabolism level. A correlation analysis indicated fourteen kinds key microbiome and six downregulated metabolites interfere with each other and together influence the growth performance of steers.</p><p><strong>Conclusion: </strong>These results suggest that feed with 20 g/(d·head) OEO in steers diets could improve growth performance, and reduces virus abundance and disease risk. And the findings provide fundamental insights into OEO, as an alternative source of natural bioactive compounds, how effect on rumen development, composition and function of microorganisms.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"44"},"PeriodicalIF":4.9,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12057097/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144060516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}