Animal microbiomePub Date : 2023-09-12DOI: 10.1186/s42523-023-00265-5
M F Hares, B E Griffiths, F Johnson, C Nelson, S Haldenby, C J Stewart, J S Duncan, G Oikonomou, J L Coombes
{"title":"Specific pathway abundances in the neonatal calf faecal microbiome are associated with susceptibility to Cryptosporidium parvum infection: a metagenomic analysis.","authors":"M F Hares, B E Griffiths, F Johnson, C Nelson, S Haldenby, C J Stewart, J S Duncan, G Oikonomou, J L Coombes","doi":"10.1186/s42523-023-00265-5","DOIUrl":"10.1186/s42523-023-00265-5","url":null,"abstract":"<p><strong>Background: </strong>Cryptosporidium parvum is the main cause of calf scour worldwide. With limited therapeutic options and research compared to other Apicomplexa, it is important to understand the parasites' biology and interactions with the host and microbiome in order to develop novel strategies against this infection. The age-dependent nature of symptomatic cryptosporidiosis suggests a link to the undeveloped immune response, the immature intestinal epithelium, and its associated microbiota. This led us to hypothesise that specific features of the early life microbiome could predict calf susceptibility to C. parvum infection.</p><p><strong>Results: </strong>In this study, a single faecal swab sample was collected from each calf within the first week of life in a cohort of 346 animals. All 346 calves were subsequently monitored for clinical signs of cryptosporidiosis, and calves that developed diarrhoea were tested for Rotavirus, Coronavirus, E. coli F5 (K99) and C. parvum by lateral flow test (LFT). A retrospective case-control approach was taken whereby a subset of healthy calves (Control group; n = 33) and calves that went on to develop clinical signs of infectious diarrhoea and test positive for C. parvum infection via LFT (Cryptosporidium-positive group; n = 32) were selected from this cohort, five of which were excluded due to low DNA quality. A metagenomic analysis was conducted on the faecal microbiomes of the control group (n = 30) and the Cryptosporidium-positive group (n = 30) prior to infection, to determine features predictive of cryptosporidiosis. Taxonomic analysis showed no significant differences in alpha diversity, beta diversity, and taxa relative abundance between controls and Cryptosporidium-positive groups. Analysis of functional potential showed pathways related to isoprenoid precursor, haem and purine biosynthesis were significantly higher in abundance in calves that later tested positive for C. parvum (q ≤ 0.25). These pathways are either absent or streamlined in the C. parvum parasites. Though the de novo production of isoprenoid precursors, haem and purines are absent, C. parvum has been shown to encode enzymes that catalyse the downstream reactions of these pathway metabolites, indicating that C. parvum may scavenge those products from an external source.</p><p><strong>Conclusions: </strong>The host has previously been put forward as the source of essential metabolites, but our study suggests that C. parvum may also be able to harness specific metabolic pathways of the microbiota in order to survive and replicate. This finding is important as components of these microbial pathways could be exploited as potential therapeutic targets for the prevention or mitigation of cryptosporidiosis in bovine neonates.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"5 1","pages":"43"},"PeriodicalIF":0.0,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10496319/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10606279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal microbiomePub Date : 2023-09-07DOI: 10.1186/s42523-023-00262-8
Wanchang Cui, Lisa Hull, Alex Zizzo, Li Wang, Bin Lin, Min Zhai, Mang Xiao
{"title":"The gut microbiome changes in wild type and IL-18 knockout mice after 9.0 Gy total body irradiation.","authors":"Wanchang Cui, Lisa Hull, Alex Zizzo, Li Wang, Bin Lin, Min Zhai, Mang Xiao","doi":"10.1186/s42523-023-00262-8","DOIUrl":"10.1186/s42523-023-00262-8","url":null,"abstract":"<p><strong>Background: </strong>Recent studies have shown that gut microbiome plays important roles in response to radiation exposure. IL-18, an inflammatory cytokine, is highly elevated in mice, mini-pigs and nonhuman primates after radiation exposure. Blocking IL-18 using its endogenous binding protein (IL-18BP) increases mice survival after radiation exposure by decreasing bone marrow interferon-gamma levels.</p><p><strong>Methods: </strong>To further characterize the roles of IL-18 in response to radiation, both wild type and IL-18 knockout (IL-18 KO) mice were exposed to 9.0 Gy total body irradiation (TBI). The 30-day survival result demonstrated that IL-18 KO mice were significantly more resistant to radiation compared to the wild type mice (p < 0.0001). Mouse faecal samples were collected at pre-radiation (d0), d1, d3, d7, d14, d21 and d29 after radiation exposure. Microbiome profiling was performed on the faecal samples using 16S and ITS sequencing technology.</p><p><strong>Results: </strong>Data analysis showed that there was significant difference in the bacterial microbiome between wild type and IL-18 KO mice. Cohousing of wild type and IL-18 KO mice decreased the bacterial microbiome difference between the two genotypes. Much fewer bacterial genera were significantly changed in wild type mice than the IL-18 KO mice after radiation exposure. The different composition of the IL-18 KO mice and wild type mice persisted even after radiation exposure. Bacterial genera that significantly correlated with other genera were identified in the IL-18 KO and wild type mice. The metabolic pathways that differentially expressed in both genotypes were identified. The animal bacterial microbiome data could be used to predict the animal's radiation status. The fungal microbiome had no significant difference regarding genotype or time after radiation exposure.</p><p><strong>Conclusion: </strong>The current study helps understand the gut microbiome in different genetic backgrounds and its temporal changes after radiation exposure. Our data provide insight into the mechanisms underlying radiation-induced toxicity and help identify bacteria important in response to radiation.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"5 1","pages":"42"},"PeriodicalIF":0.0,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10485964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10252471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal microbiomePub Date : 2023-09-05DOI: 10.1186/s42523-023-00263-7
Kasper Rømer Villumsen, Dorthe Sandvang, Gisle Vestergård, Mia Son Räfle Olsen, Johanne Juul, Morten Dencker, Johannes Kudsk, Louise Ladefoged Poulsen
{"title":"Effects of a novel, non-invasive pre-hatch application of probiotic for broilers on development of cecum microbiota and production performance.","authors":"Kasper Rømer Villumsen, Dorthe Sandvang, Gisle Vestergård, Mia Son Räfle Olsen, Johanne Juul, Morten Dencker, Johannes Kudsk, Louise Ladefoged Poulsen","doi":"10.1186/s42523-023-00263-7","DOIUrl":"10.1186/s42523-023-00263-7","url":null,"abstract":"<p><strong>Background: </strong>Probiotics are used in the broiler industry to increase production performance. Most often a probiotic is applied by mixing it in the feed, but studies have shown that earlier application may be advantageous. Therefore, in ovo application where the probiotic is administrated into the egg before hatch has been investigated as an alternative application method. However, in ovo application may impact hatchability negatively and may not be feasible at all hatcheries. The purpose of this study was to investigate the effect of a novel non-invasive method for mass application before hatch. The probiotic (E. faecium 669) was applied as a single dose by spray on the unhatched eggs and production performance and development of the cecal microbiota until slaughter was compared with a control flock. Through 16S rRNA sequencing of cecal samples from 25 broilers at day 7, 21 and 37 we compared the microbiota composition and richness for each group. The study was repeated for additional recording of production performance and re-isolation of the probiotic E. faecium from the intestine.</p><p><strong>Results: </strong>In both trials the probiotic E. faecium could be re-isolated from the yolk sac and intestine at hatch and at day 7. Broilers in the probiotic treated groups had a higher performance in terms of bodyweight at day 34 and European production efficiency factor. Finally, a significant reduction of first-week and overall mortality was observed in the probiotic group in the first trial. Based on 16S rRNA profiling, significant differences in alpha diversity were found exclusively at day 37. Estimation of beta diversities, however, identified significant differences in microbiota composition between the control and probiotic group at day 7, 21 and 37.</p><p><strong>Conclusion: </strong>The probiotic E. faecium strain successfully colonized broilers before/during hatch after a single spray application at day 18 of incubation. Positive effects of the probiotic were observed in multiple production parameters, including reduced mortality in trial 1, and microbiota analyses indicate significantly different microbiota compositions throughout the experimental phase. Taken together, the novel low-tech mass administration of E. faecium (669) may be considered a feasible strategy for improvements of production parameters in broiler production.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"5 1","pages":"41"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478294/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10540721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal microbiomePub Date : 2023-08-31DOI: 10.1186/s42523-023-00261-9
Maurielle Eke, Kévin Tougeron, Alisa Hamidovic, Leonard S Ngamo Tinkeu, Thierry Hance, François Renoz
{"title":"Deciphering the functional diversity of the gut microbiota of the black soldier fly (Hermetia illucens): recent advances and future challenges.","authors":"Maurielle Eke, Kévin Tougeron, Alisa Hamidovic, Leonard S Ngamo Tinkeu, Thierry Hance, François Renoz","doi":"10.1186/s42523-023-00261-9","DOIUrl":"10.1186/s42523-023-00261-9","url":null,"abstract":"<p><p>Bioconversion using insects is a promising strategy to convert organic waste (catering leftovers, harvest waste, food processing byproducts, etc.) into biomass that can be used for multiple applications, turned into high added-value products, and address environmental, societal and economic concerns. Due to its ability to feed on a tremendous variety of organic wastes, the black soldier fly (Hermetia illucens) has recently emerged as a promising insect for bioconversion of organic wastes on an industrial scale. A growing number of studies have highlighted the pivotal role of the gut microbiota in the performance and health of this insect species. This review aims to provide a critical overview of current knowledge regarding the functional diversity of the gut microbiota of H. illucens, highlighting its importance for bioconversion, food safety and the development of new biotechnological tools. After providing an overview of the different strategies that have been used to outline the microbial communities of H. illucens, we discuss the diversity of these gut microbes and the beneficial services they can provide to their insect host. Emphasis is placed on technical strategies and aspects of host biology that require special attention in the near future of research. We also argue that the singular digestive capabilities and complex gut microbiota of H. illucens make this insect species a valuable model for addressing fundamental questions regarding the interactions that insects have evolved with microorganisms. By proposing new avenues of research, this review aims to stimulate research on the microbiota of a promising insect to address the challenges of bioconversion, but also fundamental questions regarding bacterial symbiosis in insects.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"5 1","pages":"40"},"PeriodicalIF":0.0,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472620/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10499204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal microbiomePub Date : 2023-08-21DOI: 10.1186/s42523-023-00258-4
Katrine Wegener Tams, Inge Larsen, Julie Elvekjær Hansen, Henrik Spiegelhauer, Alexander Damm Strøm-Hansen, Sophia Rasmussen, Anna Cäcilia Ingham, Lajos Kalmar, Iain Robert Louis Kean, Øystein Angen, Mark A Holmes, Karl Pedersen, Lars Jelsbak, Anders Folkesson, Anders Rhod Larsen, Mikael Lenz Strube
{"title":"The effects of antibiotic use on the dynamics of the microbiome and resistome in pigs.","authors":"Katrine Wegener Tams, Inge Larsen, Julie Elvekjær Hansen, Henrik Spiegelhauer, Alexander Damm Strøm-Hansen, Sophia Rasmussen, Anna Cäcilia Ingham, Lajos Kalmar, Iain Robert Louis Kean, Øystein Angen, Mark A Holmes, Karl Pedersen, Lars Jelsbak, Anders Folkesson, Anders Rhod Larsen, Mikael Lenz Strube","doi":"10.1186/s42523-023-00258-4","DOIUrl":"10.1186/s42523-023-00258-4","url":null,"abstract":"<p><p>Antibiotics are widely used in pig farming across the world which has led to concerns about the potential impact on human health through the selection of antibiotic resistant pathogenic bacteria. This worry has resulted in the development of a production scheme known as pigs Raised Without Antibiotics (RWA), in which pigs are produced in commercial farms, but are ear-tagged as RWA until slaughter unless they receive treatment, thus allowing the farmer to sell the pigs either as premium priced RWA or as conventional meat. Development of antibiotic resistance in pig farming has been studied in national surveys of antibiotic usage and resistance, as well as in experimental studies of groups of pigs, but not in individual pigs followed longitudinally in a commercial pig farm. In this study, a cohort of RWA designated pigs were sampled at 10 time points from birth until slaughter along with pen-mates treated with antibiotics at the same farm. From these samples, the microbiome, determined using 16S sequencing, and the resistome, as determined using qPCR for 82 resistance genes, was investigated, allowing us to examine the difference between RWA pigs and antibiotic treated pigs. We furthermore included 176 additional pigs from six different RWA farms which were sampled at the slaughterhouse as an endpoint to substantiate the cohort as well as for evaluation of intra-farm variability. The results showed a clear effect of age in both the microbiome and resistome composition from early life up until slaughter. As a function of antibiotic treatment, however, we observed a small but significant divergence between treated and untreated animals in their microbiome composition immediately following treatment, which disappeared before 8 weeks of age. The effect on the resistome was evident and an effect of treatment could still be detected at week 8. In animals sampled at the slaughterhouse, we observed no difference in the microbiome or the resistome as a result of treatment status but did see a strong effect of farm origin. Network analysis of co-occurrence of microbiome and resistome data suggested that some resistance genes may be transferred through mobile genetic elements, so we used Hi-C metagenomics on a subset of samples to investigate this. We conclude that antibiotic treatment has a differential effect on the microbiome vs. the resistome and that although resistance gene load is increased by antibiotic treatment load, this effect disappears before slaughter. More studies are needed to elucidate the optimal way to rear pigs without antibiotics.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"5 1","pages":"39"},"PeriodicalIF":0.0,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440943/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10041354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal microbiomePub Date : 2023-08-10DOI: 10.1186/s42523-023-00254-8
Michael J Sieler, Colleen E Al-Samarrie, Kristin D Kasschau, Zoltan M Varga, Michael L Kent, Thomas J Sharpton
{"title":"Disentangling the link between zebrafish diet, gut microbiome succession, and Mycobacterium chelonae infection.","authors":"Michael J Sieler, Colleen E Al-Samarrie, Kristin D Kasschau, Zoltan M Varga, Michael L Kent, Thomas J Sharpton","doi":"10.1186/s42523-023-00254-8","DOIUrl":"10.1186/s42523-023-00254-8","url":null,"abstract":"<p><strong>Background: </strong>Despite the long-established importance of zebrafish (Danio rerio) as a model organism and their increasing use in microbiome-targeted studies, relatively little is known about how husbandry practices involving diet impact the zebrafish gut microbiome. Given the microbiome's important role in mediating host physiology and the potential for diet to drive variation in microbiome composition, we sought to clarify how three different dietary formulations that are commonly used in zebrafish facilities impact the gut microbiome. We compared the composition of gut microbiomes in approximately 60 AB line adult (129- and 214-day-old) zebrafish fed each diet throughout their lifespan.</p><p><strong>Results: </strong>Our analysis finds that diet has a substantial impact on the composition of the gut microbiome in adult fish, and that diet also impacts the developmental variation in the gut microbiome. We further evaluated how 214-day-old fish microbiome compositions respond to exposure of a common laboratory pathogen, Mycobacterium chelonae, and whether these responses differ as a function of diet. Our analysis finds that diet determines the manner in which the zebrafish gut microbiome responds to M. chelonae exposure, especially for moderate and low abundance taxa. Moreover, histopathological analysis finds that male fish fed different diets are differentially infected by M. chelonae.</p><p><strong>Conclusions: </strong>Overall, our results indicate that diet drives the successional development of the gut microbiome as well as its sensitivity to exogenous exposure. Consequently, investigators should carefully consider the role of diet in their microbiome zebrafish investigations, especially when integrating results across studies that vary by diet.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"5 1","pages":"38"},"PeriodicalIF":4.9,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413624/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10331193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal microbiomePub Date : 2023-08-05DOI: 10.1186/s42523-023-00259-3
Roi Lapid, Yair Motro, Hillary Craddock, Boris Khalfin, Roni King, Gila Kahila Bar-Gal, Jacob Moran-Gilad
{"title":"Fecal microbiota of the synanthropic golden jackal (Canis aureus).","authors":"Roi Lapid, Yair Motro, Hillary Craddock, Boris Khalfin, Roni King, Gila Kahila Bar-Gal, Jacob Moran-Gilad","doi":"10.1186/s42523-023-00259-3","DOIUrl":"10.1186/s42523-023-00259-3","url":null,"abstract":"<p><p>The golden jackal (Canis aureus), is a medium canid carnivore widespread throughout the Mediterranean region and expanding into Europe. This species thrives near human settlements and is implicated in zoonoses such as rabies. This study explores for the first time, the golden jackal fecal microbiota. We analyzed 111 fecal samples of wild golden jackals using 16S rRNA amplicon sequencing the connection of the microbiome to animal characteristics, burden of pathogens and geographic and climate characteristics. We further compared the fecal microbiota of the golden jackal to the black-backed jackal and domestic dog. We found that the golden jackal fecal microbiota is dominated by the phyla Bacteroidota, Fusobacteriota and Firmicutes. The golden jackal fecal microbiota was associated with different variables, including geographic region, age-class, exposure to rabies oral vaccine, fecal parasites and toxoplasmosis. A remarkable variation in the relative abundance of different taxa was also found associated with different variables, such as age-class. Linear discriminant analysis effect size (LEfSe) analysis found abundance of specific taxons in each region, Megasphaera genus in group 1, Megamonas genus in group 2 and Bacteroides coprocola species in group 3. We also found a different composition between the fecal microbiota of the golden jackal, blacked-backed jackal and the domestic dog. Furthermore, LEfSe analysis found abundance of Fusobacterium and Bacteroides genera in the golden jackal, Clostridia class in blacked-backed jackal and Megamonas genus in domestic dog. The golden jackal fecal microbiota is influenced by multiple factors including host traits and pathogen burden. The characterization of the microbiota of this thriving species may aid in mapping its spread and proximity to human settlements. Moreover, understanding the jackal microbiota could inform the study of potential animal and human health risks and inform control measures.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"5 1","pages":"37"},"PeriodicalIF":0.0,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10403885/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9946560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal microbiomePub Date : 2023-08-03DOI: 10.1186/s42523-023-00257-5
Ilario Ferrocino, Ilaria Biasato, Sihem Dabbou, Elena Colombino, Kalliopi Rantsiou, Simone Squara, Marta Gariglio, Maria Teresa Capucchio, Laura Gasco, Chiara Emilia Cordero, Erica Liberto, Achille Schiavone, Luca Cocolin
{"title":"Lactiplantibacillus plantarum, lactiplantibacillus pentosus and inulin meal inclusion boost the metagenomic function of broiler chickens.","authors":"Ilario Ferrocino, Ilaria Biasato, Sihem Dabbou, Elena Colombino, Kalliopi Rantsiou, Simone Squara, Marta Gariglio, Maria Teresa Capucchio, Laura Gasco, Chiara Emilia Cordero, Erica Liberto, Achille Schiavone, Luca Cocolin","doi":"10.1186/s42523-023-00257-5","DOIUrl":"10.1186/s42523-023-00257-5","url":null,"abstract":"<p><strong>Background: </strong>The inclusion of alternative ingredients in poultry feed is foreseen to impact poultry gut microbiota. New feeding strategies (probiotics/prebiotics) must be adopted to allow sustainable productions. Therefore, the current study aimed to use metagenomics approaches to determine how dietary inclusion of prebiotic (inulin) plus a multi-strain probiotic mixture of Lactiplantibacillus plantarum and Lactiplantibacillus pentosus affected microbiota composition and functions of the gastro-intestinal tract of the broilers during production. Fecal samples were collected at the beginning of the trial and after 5, 11 and 32 days for metataxonomic analysis. At the end of the trial, broilers were submitted to anatomo-pathological investigations and caecal content was subjected to volatilome analysis and DNAseq.</p><p><strong>Results: </strong>Probiotic plus prebiotic inclusion did not significantly influence bird performance and did not produce histopathological alterations or changes in blood measurements, which indicates that the probiotic did not impair the overall health status of the birds. The multi-strain probiotic plus inulin inclusion in broilers increased the abundance of Blautia, Faecalibacterium and Lachnospiraceae and as a consequence an increased level of butyric acid was observed. In addition, the administration of probiotics plus inulin modified the gut microbiota composition also at strain level since probiotics alone or in combination with inulin select specific Faecalibacterium prausnitzi strain populations. The metagenomic analysis showed in probiotic plus prebiotic fed broilers a higher number of genes required for branched-chain amino acid biosynthesis belonging to selected F. prausnitzi strains, which are crucial in increasing immune function resistance to pathogens. In the presence of the probiotic/prebiotic a reduction in the occurrence of antibiotic resistance genes belonging to aminoglycoside, beta-lactamase and lincosamide family was observed.</p><p><strong>Conclusions: </strong>The positive microbiome modulation observed is particularly relevant, since the use of these alternative ingredients could promote a healthier status of the broiler's gut.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"5 1","pages":"36"},"PeriodicalIF":0.0,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399007/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9938886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of rearing mode on gastro-intestinal microbiota and development, immunocompetence, sanitary status and growth performance of lambs from birth to two months of age.","authors":"Lysiane Dunière, Philippe Ruiz, Yacine Lebbaoui, Laurie Guillot, Mickael Bernard, Evelyne Forano, Frédérique Chaucheyras-Durand","doi":"10.1186/s42523-023-00255-7","DOIUrl":"https://doi.org/10.1186/s42523-023-00255-7","url":null,"abstract":"<p><strong>Background: </strong>Artificial rearing system, commonly used in prolific sheep breeds, is associated to increased mortality and morbidity rates before weaning, which might be linked to perturbations in digestive tract maturation, including microbiota colonization. This study evaluated the effect of rearing mode (mothered or artificially reared) on the establishment of the rumen and intestinal microbiome of lambs from birth to weaning. We also measured immunological and zootechnical parameters to assess lambs' growth and health. GIT anatomy as well as rumen and intestinal epithelium gene expression were also analysed on weaned animals to assess possible long-term effects of the rearing practice.</p><p><strong>Results: </strong>Total VFA concentrations were higher in mothered lambs at 2 months of age, while artificially-reared lambs had lower average daily gain, a more degraded sanitary status and lower serum IgG concentration in the early growth phase. Metataxonomic analysis revealed higher richness of bacterial and eukaryote populations in mothered vs. artificially-reared lambs in both Rumen and Feces. Beta diversity analysis indicated an evolution of rumen and fecal bacterial communities in mothered lambs with age, not observed in artificially-reared lambs. Important functional microorganisms such as the cellulolytic bacterium Fibrobacter succinogenes and rumen protozoa did not establish correctly before weaning in artificially-reared lambs. Enterobacteriaceae and Escherichia coli were dominant in the fecal microbiota of mothered lambs, but main E. coli virulence genes were not found differential between the two groups, suggesting they are commensal bacteria which could exert a protective effect against pathogens. The fecal microbiota of artificially-reared lambs had a high proportion of lactic acid bacteria taxa. No difference was observed in mucosa gene expression in the two lamb groups after weaning.</p><p><strong>Conclusions: </strong>The rearing mode influences gastrointestinal microbiota and health-associated parameters in offspring in early life: rumen maturation was impaired in artificially-reared lambs which also presented altered sanitary status and higher risk of gut dysbiosis. The first month of age is thus a critical period where the gastrointestinal tract environment and microbiota are particularly unstable and special care should be taken in the management of artificially fed newborn ruminants.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"5 1","pages":"34"},"PeriodicalIF":0.0,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353247/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9839291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Animal microbiomePub Date : 2023-07-17DOI: 10.1186/s42523-023-00256-6
Brandi Feehan, Qinghong Ran, Victoria Dorman, Kourtney Rumback, Sophia Pogranichniy, Kaitlyn Ward, Robert Goodband, Megan C Niederwerder, Sonny T M Lee
{"title":"Novel complete methanogenic pathways in longitudinal genomic study of monogastric age-associated archaea.","authors":"Brandi Feehan, Qinghong Ran, Victoria Dorman, Kourtney Rumback, Sophia Pogranichniy, Kaitlyn Ward, Robert Goodband, Megan C Niederwerder, Sonny T M Lee","doi":"10.1186/s42523-023-00256-6","DOIUrl":"10.1186/s42523-023-00256-6","url":null,"abstract":"<p><strong>Background: </strong>Archaea perform critical roles in the microbiome system, including utilizing hydrogen to allow for enhanced microbiome member growth and influencing overall host health. With the majority of microbiome research focusing on bacteria, the functions of archaea are largely still under investigation. Understanding methanogenic functions during the host lifetime will add to the limited knowledge on archaeal influence on gut and host health. In our study, we determined lifelong archaea dynamics, including detection and methanogenic functions, while assessing global, temporal and host distribution of our novel archaeal metagenome-assembled genomes (MAGs). We followed 7 monogastric swine throughout their life, from birth to adult (1-156 days of age), and collected feces at 22 time points. The samples underwent gDNA extraction, Illumina sequencing, bioinformatic quality and assembly processes, MAG taxonomic assignment and functional annotation. MAGs were utilized in downstream phylogenetic analysis for global, temporal and host distribution in addition to methanogenic functional potential determination.</p><p><strong>Results: </strong>We generated 1130 non-redundant MAGs, representing 588 unique taxa at the species level, with 8 classified as methanogenic archaea. The taxonomic classifications were as follows: orders Methanomassiliicoccales (5) and Methanobacteriales (3); genera UBA71 (3), Methanomethylophilus (1), MX-02 (1), and Methanobrevibacter (3). We recovered the first US swine Methanobrevibacter UBA71 sp006954425 and Methanobrevibacter gottschalkii MAGs. The Methanobacteriales MAGs were identified primarily during the young, preweaned host whereas Methanomassiliicoccales primarily in the adult host. Moreover, we identified our methanogens in metagenomic sequences from Chinese swine, US adult humans, Mexican adult humans, Swedish adult humans, and paleontological humans, indicating that methanogens span different hosts, geography and time. We determined complete metabolic pathways for all three methanogenic pathways: hydrogenotrophic, methylotrophic, and acetoclastic. This study provided the first evidence of acetoclastic methanogenesis in archaea of monogastric hosts which indicated a previously unknown capability for acetate utilization in methanogenesis for monogastric methanogens. Overall, we hypothesized that the age-associated detection patterns were due to differential substrate availability via the host diet and microbial metabolism, and that these methanogenic functions are likely crucial to methanogens across hosts. This study provided a comprehensive, genome-centric investigation of monogastric-associated methanogens which will further improve our understanding of microbiome development and functions.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"5 1","pages":"35"},"PeriodicalIF":4.9,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353118/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9891111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}