Annemiek Maaskant, Bas Voermans, Evgeni Levin, Marcus C de Goffau, Nicole Plomp, Frank Schuren, Edmond J Remarque, Antoine Smits, Jan A M Langermans, Jaco Bakker, Roy Montijn
{"title":"Microbiome signature suggestive of lactose-intolerance in rhesus macaques (Macaca mulatta) with intermittent chronic diarrhea.","authors":"Annemiek Maaskant, Bas Voermans, Evgeni Levin, Marcus C de Goffau, Nicole Plomp, Frank Schuren, Edmond J Remarque, Antoine Smits, Jan A M Langermans, Jaco Bakker, Roy Montijn","doi":"10.1186/s42523-024-00338-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic diarrhea is a common cause of mortality and morbidity in captive rhesus macaques (Macaca mulatta). The exact etiology of chronic diarrhea in macaques remains unidentified. The occurrence of diarrhea is frequently linked to dysbiosis within the gut microbiome. Research into microbiome signatures correlated with diarrhea in macaques have predominantly been conducted with single sample collections. Our analysis was based on the metagenomic composition of longitudinally acquired fecal samples from rhesus macaques with chronic diarrhea and clinically healthy rhesus macaques that were obtained over the course of two years. We aimed to investigate potential relationships between the macaque gut microbiome, the presence of diarrhea and diet interventions with a selection of commercially available monkey diets.</p><p><strong>Results: </strong>The microbiome signature of macaques with intermittent chronic diarrhea showed a significant increase in lactate producing bacteria e.g. lactobacilli, and an increase in fermenters of lactate and succinate. Strikingly, two lactose free diets were associated with a lower incidence of diarrhea.</p><p><strong>Conclusion: </strong>A lactose intolerance mechanism is suggested in these animals by the bloom of Lactobacillus in the presence of lactose resulting in an overproduction of intermediate fermentation products likely led to osmotically induced diarrhea. This study provides new insights into suspected microbiome-lactose intolerance relationship in rhesus macaques with intermittent chronic diarrhea. The integration of machine learning with metagenomic data analysis holds potential for developing targeted dietary interventions and therapeutic strategies and therefore ensuring a healthier and more resilient primate population.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"6 1","pages":"53"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11421201/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-024-00338-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Chronic diarrhea is a common cause of mortality and morbidity in captive rhesus macaques (Macaca mulatta). The exact etiology of chronic diarrhea in macaques remains unidentified. The occurrence of diarrhea is frequently linked to dysbiosis within the gut microbiome. Research into microbiome signatures correlated with diarrhea in macaques have predominantly been conducted with single sample collections. Our analysis was based on the metagenomic composition of longitudinally acquired fecal samples from rhesus macaques with chronic diarrhea and clinically healthy rhesus macaques that were obtained over the course of two years. We aimed to investigate potential relationships between the macaque gut microbiome, the presence of diarrhea and diet interventions with a selection of commercially available monkey diets.
Results: The microbiome signature of macaques with intermittent chronic diarrhea showed a significant increase in lactate producing bacteria e.g. lactobacilli, and an increase in fermenters of lactate and succinate. Strikingly, two lactose free diets were associated with a lower incidence of diarrhea.
Conclusion: A lactose intolerance mechanism is suggested in these animals by the bloom of Lactobacillus in the presence of lactose resulting in an overproduction of intermediate fermentation products likely led to osmotically induced diarrhea. This study provides new insights into suspected microbiome-lactose intolerance relationship in rhesus macaques with intermittent chronic diarrhea. The integration of machine learning with metagenomic data analysis holds potential for developing targeted dietary interventions and therapeutic strategies and therefore ensuring a healthier and more resilient primate population.