3D printing in medicine最新文献

筛选
英文 中文
Comparative analysis of conventionally and additively manufactured acetabular shells from a single manufacturer. 对一家制造商生产的传统髋臼壳和快速成型髋臼壳进行比较分析。
IF 3.2
3D printing in medicine Pub Date : 2024-09-29 DOI: 10.1186/s41205-024-00233-y
Harry Hothi, Johann Henckel, Arya Nicum, Anna Di Laura, Klaus Schlueter-Brust, Alister Hart
{"title":"Comparative analysis of conventionally and additively manufactured acetabular shells from a single manufacturer.","authors":"Harry Hothi, Johann Henckel, Arya Nicum, Anna Di Laura, Klaus Schlueter-Brust, Alister Hart","doi":"10.1186/s41205-024-00233-y","DOIUrl":"https://doi.org/10.1186/s41205-024-00233-y","url":null,"abstract":"<p><strong>Background: </strong>The Trident II Tritanium acetabular shell is additively manufactured (3D printed), based on the established Trident 'I' Tritanium shell, produced using conventional methods; this study characterised their differences.</p><p><strong>Methods: </strong>We obtained 5 Trident I (T1) and 5 Trident II (T2) shells sized 52 mm, 54 mm (n = 3) and 60 mm. We measured their: mass, shell-liner engaging surface roughness, roundness, wall thickness, the depth of the bone-facing porous layer, porosity, and the number, volume and location of structural voids.</p><p><strong>Results: </strong>The mass varied by up to 13.44 g. The T1 and T2 shells had a median internal roughness of 0.18 μm and 0.43 μm, (p < 0.001) and the median departure from roundness was 6.9 μm and 8.9 μm, (p < 0.001). The 54 mm and 60 mm T2 shell walls were 37% and 29% thinner than their T1 counterparts (p < 0.01). The T2 shells had irregular porous structures, shallower in depth by 11-27% (p < 0.001) than T1 shells, which had repeating mesh units; the overall porosity was comparable (54%). All T2 shells had between 115 and 3415 structural voids, compared with two T1 shells containing 21 and 31 voids. There was no difference in the depth of the porous layer for the 54 mm T2 shells (p = 0.068), whilst T1 shells did show variability (p < 0.01). Both groups showed a variability in surface roughness and roundness (p < 0.01).</p><p><strong>Conclusion: </strong>This is the first study to compare shells from a single manufacturer, produced using conventional and additive methods. This data will help interpret the performance of the 3D printed Trident II as longer-term clinical data is generated.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"10 1","pages":"31"},"PeriodicalIF":3.2,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439207/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142333560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and assessment of case-specific physical and augmented reality simulators for intracranial aneurysm clipping. 开发和评估用于颅内动脉瘤夹闭术的特定病例物理和增强现实模拟器。
IF 3.2
3D printing in medicine Pub Date : 2024-09-18 DOI: 10.1186/s41205-024-00235-w
Lorenzo Civilla, Philippe Dodier, Maria Chiara Palumbo, Alberto C L Redaelli, Markus Koenigshofer, Ewald Unger, Torstein R Meling, Nikolay Velinov, Karl Rössler, Francesco Moscato
{"title":"Development and assessment of case-specific physical and augmented reality simulators for intracranial aneurysm clipping.","authors":"Lorenzo Civilla, Philippe Dodier, Maria Chiara Palumbo, Alberto C L Redaelli, Markus Koenigshofer, Ewald Unger, Torstein R Meling, Nikolay Velinov, Karl Rössler, Francesco Moscato","doi":"10.1186/s41205-024-00235-w","DOIUrl":"https://doi.org/10.1186/s41205-024-00235-w","url":null,"abstract":"<p><strong>Background: </strong>Microsurgical clipping is a delicate neurosurgical procedure used to treat complex Unruptured Intracranial Aneurysms (UIAs) whose outcome is dependent on surgeon's experience. Simulations are emerging as excellent complements to standard training, but their adoption is limited by the realism they provide. The aim of this study was to develop and validate a microsurgical clipping simulator platform.</p><p><strong>Methods: </strong>Physical and holographic simulators of UIA clipping have been developed. The physical phantom consisted of a 3D printed hard skull and five (n = 5) rapidly interchangeable, perfused and fluorescence compatible 3D printed aneurysm silicone phantoms. The holographic clipping simulation included a real-time finite-element-model of the aneurysm sac, allowing interaction with a virtual clip and its occlusion. Validity, usability, usefulness and applications of the simulators have been assessed through clinical scores for aneurysm occlusion and a questionnaire study involving 14 neurosurgical residents (R) and specialists (S) for both the physical (<sub>p</sub>) and holographic (<sub>h</sub>) simulators by scores going from 1 (very poor) to 5 (excellent).</p><p><strong>Results: </strong>The physical simulator allowed to replicate successfully and accurately the patient-specific anatomy. UIA phantoms were manufactured with an average dimensional deviation from design of 0.096 mm and a dome thickness of 0.41 ± 0.11 mm. The holographic simulation executed at 25-50 fps allowing to gain unique insights on the anatomy and testing of the application of several clips without manufacturing costs. Aneurysm closure in the physical model evaluated by fluorescence simulation and post-operative CT revealed Raymond 1 (full) occlusion respectively in 68.89% and 73.33% of the cases. For both the simulators content validity, construct validity, usability and usefulness have been observed, with the highest scores observed in clip selection usefulness R<sub>p</sub>=4.78, S<sub>p</sub>=5.00 and R<sub>h</sub>=4.00, S<sub>h</sub>=5.00 for the printed and holographic simulators.</p><p><strong>Conclusions: </strong>Both the physical and the holographic simulators were validated and resulted usable and useful in selecting valid clips and discarding unsuitable ones. Thus, they represent ideal platforms for realistic patient-specific simulation-based training of neurosurgical residents and hold the potential for further applications in preoperative planning.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"10 1","pages":"30"},"PeriodicalIF":3.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11411828/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metamaterial design for aortic aneurysm simulation using 3D printing. 利用 3D 打印技术模拟主动脉瘤的超材料设计。
IF 3.2
3D printing in medicine Pub Date : 2024-08-07 DOI: 10.1186/s41205-024-00219-w
Arthur K F Sakai, Ismar N Cestari, Eraldo de Sales, Marcelo Mazzetto, Idágene A Cestari
{"title":"Metamaterial design for aortic aneurysm simulation using 3D printing.","authors":"Arthur K F Sakai, Ismar N Cestari, Eraldo de Sales, Marcelo Mazzetto, Idágene A Cestari","doi":"10.1186/s41205-024-00219-w","DOIUrl":"10.1186/s41205-024-00219-w","url":null,"abstract":"<p><strong>Introduction: </strong>The use of three-dimensional (3D) printed anatomic models is steadily increasing in research and as a tool for clinical decision-making. The mechanical properties of polymers and metamaterials were investigated to evaluate their application in mimicking the biomechanics of the aortic vessel wall.</p><p><strong>Methodology: </strong>Uniaxial tensile tests were performed to determine the elastic modulus, mechanical stress, and strain of 3D printed samples. We used a combination of materials, designed to mimic biological tissues' properties, the rigid Vero<sup>TM</sup> family, and the flexible Agilus30™. Metamaterials were designed by tessellating unit cells that were used as lattice-reinforcement to tune their mechanical properties. The lattice-reinforcements were based on two groups of patterns, mainly responding to the movement between links/threads (chain and knitted) or to deformation (origami and diamond crystal). The mechanical properties of the printed materials were compared with the characteristics of healthy and aneurysmal aortas.</p><p><strong>Results: </strong>Uniaxial tensile tests showed that the use of a lattice-reinforcement increased rigidity and may increase the maximum stress generated. The pattern and material of the lattice-reinforcement may increase or reduce the strain at maximum stress, which is also affected by the base material used. Printed samples showed max stress ranging from 0.39 ± 0.01 MPa to 0.88 ± 0.02 MPa, and strain at max stress ranging from 70.44 ± 0.86% to 158.21 ± 8.99%. An example of an application was created by inserting a metamaterial designed as a lattice-reinforcement on a model of the aorta to simulate an abdominal aortic aneurysm.</p><p><strong>Conclusion: </strong>The maximum stresses obtained with the printed models were similar to those of aortic tissue reported in the literature, despite the fact that the models did not perfectly reproduce the biological tissue behavior.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"10 1","pages":"29"},"PeriodicalIF":3.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304610/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast and accurate distal locking of interlocked intramedullary nails using computer-vision and a 3D printed device. 利用计算机视觉和 3D 打印设备快速准确地锁定互锁髓内钉的远端。
IF 3.2
3D printing in medicine Pub Date : 2024-08-07 DOI: 10.1186/s41205-024-00221-2
Zakaria Chabihi, Nizar Nouidi, Brahim Demnati, Mohamed Amine Benhima, Imad Abkari
{"title":"Fast and accurate distal locking of interlocked intramedullary nails using computer-vision and a 3D printed device.","authors":"Zakaria Chabihi, Nizar Nouidi, Brahim Demnati, Mohamed Amine Benhima, Imad Abkari","doi":"10.1186/s41205-024-00221-2","DOIUrl":"10.1186/s41205-024-00221-2","url":null,"abstract":"<p><strong>Introduction: </strong>Distal locking is a challenging and time-consuming step in interlocked intramedullary nailing of long bone fractures. Current methods have limitations in terms of simplicity, universality, accuracy, speed, and safety. We propose a novel device and software for distal locking using computer vision.</p><p><strong>Methods and materials: </strong>The device consists of an universal ancillary clamp, a telescopic arm, a viewfinder clamp, and a radio-opaque cross. The software uses a camera photo from the C-arm intensifier and adjusts for geometric projection deformities. The software employs edge detection, Hough transform, perspective interpolation, and vector calculation algorithms to locate the distal hole center. The device and software were designed, manufactured, and tested using 3D CAD, FEM, DRR, and performance testing on phantom bones.</p><p><strong>Results: </strong>The device and software showed high accuracy and precision of 98.7% and 99.2% respectively in locating the distal hole center and calculating the correctional vector. The device and software also showed high success ratio in drilling the hole and inserting the screw. The device and software reduced the radiation exposure for the surgeon and the patient. The success ratio of the device and software was validated by the physical testing, which simulated the real clinical scenario of distal locking. The radiation exposure was as low as 5 s with a radiation dose of 0.2mSv, drastically reducing radiation exposure during distal locking.</p><p><strong>Discussion: </strong>Our device and software have several advantages over other distal locking methods, such as simplicity, universality, accuracy, speed, and safety. Our device and software also have some disadvantages, such as reliability and legislation. Our device and software can be compared with other distal locking methods based on these criteria. Our device and software have some limitations and challenges that need to be addressed in the future, such as clinical validation, and regulatory approval.</p><p><strong>Conclusion: </strong>The device showed promising results in terms of low-cost, reusability, low radiation exposure, high accuracy, fast distal locking, high stiffness, and adaptability. The device has several advantages over other distal locking techniques, such as free-hand technique, mechanical aiming devices, electromagnetic navigation systems, and computer-assisted systems. We believe that our device and software have the potential to revolutionize the distal locking technique and to improve the outcomes and quality of life of the patients with long bone fractures.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"10 1","pages":"28"},"PeriodicalIF":3.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141899058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectiveness of a new 3D printed simulator for mitral transcatheter edge-to-edge repair in enhancing the confidence and procedural skills of the operator. 新型二尖瓣经导管边缘对边缘修补术 3D 打印模拟器在增强操作者信心和程序技能方面的效果。
IF 3.2
3D printing in medicine Pub Date : 2024-08-05 DOI: 10.1186/s41205-024-00230-1
Angel Babu, Michele Bertolini, Michael Mullen, Andrew Cook, Aigerim Mullen, Claudio Capelli
{"title":"Effectiveness of a new 3D printed simulator for mitral transcatheter edge-to-edge repair in enhancing the confidence and procedural skills of the operator.","authors":"Angel Babu, Michele Bertolini, Michael Mullen, Andrew Cook, Aigerim Mullen, Claudio Capelli","doi":"10.1186/s41205-024-00230-1","DOIUrl":"10.1186/s41205-024-00230-1","url":null,"abstract":"<p><strong>Background: </strong>. Mitral transcatheter edge-to-edge repair (m-TEER) is a minimally invasive procedure for treating mitral regurgitation (MR). m-TEER is a highly technical procedure, and a steep learning curve needs to be overcome for operators to ensure optimal patient outcomes and minimise procedural complications. Training via online simulation and observation of procedures is not sufficient to establish operator confidence; thus, advanced hands-on training modalities need to be explored and developed.</p><p><strong>Methods: </strong>. In this study, a novel anatomical simulator for m-TEER training was evaluated in comparison to a standard model. The proposed simulator resembled the anatomical features of the right and left atrium, left ventricle and mitral valve apparatus. Participants in the questionnaire (n = 18) were recruited across 4 centres in London with (n = 8) and without (n = 10) prior experience in m-TEER. Participants were asked to simulate procedures on both an idealised, routinely used simulator and the newly proposed anatomical model. The questionnaire was designed to assess (i) participants' confidence before and after training and (ii) the realism of the model in the context of the m-TEER procedure. The results of the questionnaires were collected, and statistical analysis (t-test) was performed.</p><p><strong>Results: </strong>. Both models were equally beneficial in increasing operator confidence before and after the simulation of the intervention (P = 0.43). However, increased confidence after training with the anatomical model was recorded (P = 0.02). Participants with prior experience with m-TEER therapy were significantly more confident about the procedure after training with the anatomical model than participants who had no prior experience (P = 0.002). On average, all participants thought that the anatomical model was effective as a training simulator (P = 0.013) and should be integrated into routine training (P = 0.015)). Participants with experience thought that the anatomical model was more effective at reproducing the m-TEER procedure than the idealised model (P = 0.03).</p><p><strong>Conclusions: </strong>. This study showed how a more realistic simulator can be used to improve the effectiveness of m-TEER procedural training. Such pilot results suggest planning future and large investigations to evaluate improvements in clinical practice.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"10 1","pages":"26"},"PeriodicalIF":3.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299365/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D-printing inherently MRI-visible accessories in aiding MRI-guided biopsies. 三维打印固有的核磁共振成像可视配件,辅助核磁共振成像引导下的活组织检查。
IF 3.2
3D printing in medicine Pub Date : 2024-08-05 DOI: 10.1186/s41205-024-00227-w
Yanlu Wang
{"title":"3D-printing inherently MRI-visible accessories in aiding MRI-guided biopsies.","authors":"Yanlu Wang","doi":"10.1186/s41205-024-00227-w","DOIUrl":"10.1186/s41205-024-00227-w","url":null,"abstract":"<p><strong>Background: </strong>3D printers have gained prominence in rapid prototyping and viable in creating dimensionally accurate objects that are both safe within a Magnetic Resonance Imaging (MRI) environment and visible in MRI scans. A challenge when making MRI-visible objects using 3D printing is that hard plastics are invisible in standard MRI scans, while fluids are not. So typically, a hollow object will be printed and filled with a liquid that will be visible in MRI scans. This poses an engineering challenge however since objects created using traditional Fused Deposition Modeling (FDM) 3D-printing techniques are prone to leakage. Digital Light Processing (DLP) is a relatively modern and affordable 3D-printing technique using UV-hardened resin, capable of creating objects that are inherently liquid-tight. When printing hollow parts using DLP printers, one typically requires adding drainage holes for uncured liquid resin to escape during the printing process. If this is not done liquid resin will remain inside the object, which in our application is the desired outcome.</p><p><strong>Purpose: </strong>We devised a method to produce an inherently MRI-visible accessory using DLP technology with low dimensional tolerance to facilitate MRI-guided breast biopsies.</p><p><strong>Methods: </strong>By hollowing out the object without adding drainage holes and tuning printing parameters such as z-lift distance to retain as much uncured liquid resin inside as possible through surface tension, objects that are inherently visible in MRI scans can be created without further post-processing treatment.</p><p><strong>Results: </strong>Objects created through our method are simple and inexpensive to recreate, have minimal manufacturing steps, and are shown to be dimensionally exact and inherently MRI visible to be directly used in various applications without further treatment.</p><p><strong>Conclusion: </strong>Our proposed method of manufacturing objects that are inherently both MRI safe, and MRI visible. The proposed process is simple and does not require additional materials and tools beyond a DLP 3D-printer. With only an inexpensive DLP 3D-printer kit and basic cleaning and sanitation materials found in the hospital, we have demonstrated the viability of our process by successfully creating an object containing fine structures with low spatial tolerances used for MRI-guided breast biopsies.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"10 1","pages":"27"},"PeriodicalIF":3.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the value of individualized 3D printed models for examination, diagnosis and treatment planning of cervical cancer. 评估个性化 3D 打印模型在宫颈癌检查、诊断和治疗规划中的价值。
IF 3.2
3D printing in medicine Pub Date : 2024-07-27 DOI: 10.1186/s41205-024-00229-8
Anne Cathrine Scherer-Quenzer, Inga Beyers, Adam Kalisz, Stephanie Tina Sauer, Marcus Zimmermann, Achim Wöckel, Bülent Polat, Tanja Schlaiss, Selina Schelbert, Matthias Kiesel
{"title":"Evaluating the value of individualized 3D printed models for examination, diagnosis and treatment planning of cervical cancer.","authors":"Anne Cathrine Scherer-Quenzer, Inga Beyers, Adam Kalisz, Stephanie Tina Sauer, Marcus Zimmermann, Achim Wöckel, Bülent Polat, Tanja Schlaiss, Selina Schelbert, Matthias Kiesel","doi":"10.1186/s41205-024-00229-8","DOIUrl":"10.1186/s41205-024-00229-8","url":null,"abstract":"<p><strong>Background: </strong>3D printing holds great potential of improving examination, diagnosis and treatment planning as well as interprofessional communication in the field of gynecological oncology. In the current manuscript we evaluated five individualized, patient-specific models of cervical cancer FIGO Stage I-III, created with 3D printing, concerning their value for translational oncology.</p><p><strong>Methods: </strong>Magnetic resonance imaging (MRI) of the pelvis was performed on a 3.0 Tesla MRI, including a T2-weighted isotropic 3D sequence. The MRI images were segmented and transferred to virtual 3D models via a custom-built 3D-model generation pipeline and printed by material extrusion. The 3D models were evaluated by all medical specialties involved in patient care of cervical cancer, namely surgeons, radiologists, pathologists and radiation oncologists. Information was obtained from evaluated profession-specific questionnaires which were filled out after inspecting all five models. The questionnaires included multiple-select questions, questions based on Likert scales (1 = \"strongly disagree \" or \"not at all useful \" up to 5 = \"strongly agree \" or \"extremely useful \") and dichotomous questions (\"Yes\" or \"No\").</p><p><strong>Results: </strong>Surgeons rated the models as useful during surgery (4.0 out of 5) and for patient communication (4.7 out of 5). Furthermore, they believed that the models had the potential to revise the patients' treatment plan (3.7 out of 5). Pathologists evaluated with mean ratings of 3.0 out of 5 for the usefulness of the models in diagnostic reporting and macroscopic evaluation. Radiologist acknowledged the possibility of providing additional information compared to imaging alone (3.7 out of 5). Radiation oncologists strongly supported the concept by rating the models highly for understanding patient-specific pathological characteristics (4.3 out of 5), assisting interprofessional communication (mean 4.3 out of 5) and communication with patients (4.7 out of 5). They also found the models useful for improving radiotherapy treatment planning (4.3 out of 5).</p><p><strong>Conclusion: </strong>The study revealed that the 3D printed models were generally well-received by all medical disciplines, with radiation oncologists showing particularly strong support. Addressing the concerns and tailoring the use of 3D models to the specific needs of each medical speciality will be essential for realizing their full potential in clinical practice.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"10 1","pages":"25"},"PeriodicalIF":3.2,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282658/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141790059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a flexible liver phantom for hepatocellular carcinoma treatment planning: a useful tool for training & education. 开发用于肝细胞癌治疗规划的柔性肝脏模型:培训和教育的有用工具。
IF 3.2
3D printing in medicine Pub Date : 2024-07-22 DOI: 10.1186/s41205-024-00228-9
Abdulla Al-Thani, Abdulrahman Sharif, Sami El Borgi, Shameel Abdulla, Mahmoud Raja Ahmed Saleh, Reem Al-Khal, Carlos Velasquez, Omar Aboumarzouk, Sarada Prasad Dakua
{"title":"Development of a flexible liver phantom for hepatocellular carcinoma treatment planning: a useful tool for training & education.","authors":"Abdulla Al-Thani, Abdulrahman Sharif, Sami El Borgi, Shameel Abdulla, Mahmoud Raja Ahmed Saleh, Reem Al-Khal, Carlos Velasquez, Omar Aboumarzouk, Sarada Prasad Dakua","doi":"10.1186/s41205-024-00228-9","DOIUrl":"10.1186/s41205-024-00228-9","url":null,"abstract":"<p><strong>Purpose: </strong>Hepatocellular carcinoma (HCC) is one of the most common types of liver cancer that could potentially be surrounded by healthy arteries or veins that a surgeon would have to avoid during treatment. A realistic 3D liver model is an unmet need for HCC preoperative planning.</p><p><strong>Methods: </strong>This paper presents a method to create a soft phantom model of the human liver with the help of a 3D-printed mold, silicone, ballistic gel, and a blender.</p><p><strong>Results: </strong>For silicone, the elastic modulus of seven different ratios of base silicone and silicone hardener are tested; while for ballistic gel, a model using 20% gelatin and 10% gelatin is created for the tumor and the rest of the liver, respectively. It is found that the silicone modulus of elasticity matches with the real liver modulus of elasticity. It is also found that the 10% gelatin part of the ballistic gel model is an excellent emulation of a healthy human liver.</p><p><strong>Conclusion: </strong>The 3D flexible liver phantom made from a 10% gelatin-to-water mixture demonstrates decent fidelity to real liver tissue in terms of texture and elasticity. It holds significant potential for improving medical training, preoperative planning, and surgical research. We believe that continued development and validation of such models could further enhance their utility and impact in the field of hepatobiliary treatment planning and education.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"10 1","pages":"24"},"PeriodicalIF":3.2,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of 3D-printed universal adapter in enhancing retinal imaging accessibility. 开发用于提高视网膜成像可及性的 3D 打印通用适配器。
IF 3.2
3D printing in medicine Pub Date : 2024-07-19 DOI: 10.1186/s41205-024-00231-0
Aisya Amelia Abdul Latip, Kuryati Kipli, Abang Mohammad Nizam Abang Kamaruddin, Rohana Sapawi, Kasumawati Lias, Muhammad Arif Jalil, Khairul Fikri Tamrin, Nurul Mirza Afiqah Tajudin, Han Yi Ong, Muhammad Hamdi Mahmood, Suriati Khartini Jali, Siti Kudnie Sahari, Dayang Azra Awang Mat, Lik Thai Lim
{"title":"Development of 3D-printed universal adapter in enhancing retinal imaging accessibility.","authors":"Aisya Amelia Abdul Latip, Kuryati Kipli, Abang Mohammad Nizam Abang Kamaruddin, Rohana Sapawi, Kasumawati Lias, Muhammad Arif Jalil, Khairul Fikri Tamrin, Nurul Mirza Afiqah Tajudin, Han Yi Ong, Muhammad Hamdi Mahmood, Suriati Khartini Jali, Siti Kudnie Sahari, Dayang Azra Awang Mat, Lik Thai Lim","doi":"10.1186/s41205-024-00231-0","DOIUrl":"10.1186/s41205-024-00231-0","url":null,"abstract":"<p><strong>Background: </strong>The revolutionary technology of smartphone-based retinal imaging has been consistently improving over the years. Smartphone-based retinal image acquisition devices are designed to be portable, easy to use, and cost-efficient, which enables eye care to be more widely accessible especially in geographically remote areas. This enables early disease detection for those who are in low- and middle- income population or just in general has very limited access to eye care. This study investigates the limitation of smartphone compatibility of existing smartphone-based retinal image acquisition devices. Additionally, this study aims to propose a universal adapter design that is usable with an existing smartphone-based retinal image acquisition device known as the PanOptic ophthalmoscope. This study also aims to simulate the reliability, validity, and performance overall of the developed prototype.</p><p><strong>Methods: </strong>A literature review has been conducted that identifies the limitation of smartphone compatibility among existing smartphone-based retinal image acquisition devices. Designing and modeling of proposed adapter were performed using the software AutoCAD 3D. For the proposed performance evaluation, finite element analysis (FEA) in the software Autodesk Inventor and 5-point scale method were demonstrated.</p><p><strong>Results: </strong>Published studies demonstrate that most of the existing smartphone-based retinal imaging devices have compatibility limited to specific older smartphone models. This highlights the benefit of a universal adapter in broadening the usability of existing smartphone-based retinal image acquisition devices. A functional universal adapter design has been developed that demonstrates its compatibility with a variety of smartphones regardless of the smartphone dimension or the position of the smartphone's camera lens. The proposed performance evaluation method generates an efficient stress analysis of the proposed adapter design. The end-user survey results show a positive overall performance of the developed universal adapter. However, a significant difference between the expert's views on the developed adapter and the quality of images is observed.</p><p><strong>Conclusion: </strong>The compatibility of existing smartphone-based retinal imaging devices is still mostly limited to specific smartphone models. Besides this, the concept of a universal and suitable adapter for retinal imaging using the PanOptic ophthalmoscope was presented and validated in this paper. This work provides a platform for future development of smartphone-based ophthalmoscope that is universal.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"10 1","pages":"23"},"PeriodicalIF":3.2,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264814/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D printed ventilation tubes and their effect on biological models. 3D 打印通气管及其对生物模型的影响。
IF 3.2
3D printing in medicine Pub Date : 2024-07-02 DOI: 10.1186/s41205-024-00225-y
Luis Humberto Govea-Camacho, Irma Yolanda Castillo-López, Sergio Alejandro Carbajal-Castillo, Alejandro Gonzalez-Ojeda, Gabino Cervantes-Guevara, Enrique Cervantes-Pérez, Sol Ramírez-Ochoa, Sergio Jiram Vázquez-Sánchez, Gonzalo Delgado-Hernández, Jaime Alberto Tavares-Ortega, Samantha Emily González-Muñoz, Clotilde Fuentes-Orozco
{"title":"3D printed ventilation tubes and their effect on biological models.","authors":"Luis Humberto Govea-Camacho, Irma Yolanda Castillo-López, Sergio Alejandro Carbajal-Castillo, Alejandro Gonzalez-Ojeda, Gabino Cervantes-Guevara, Enrique Cervantes-Pérez, Sol Ramírez-Ochoa, Sergio Jiram Vázquez-Sánchez, Gonzalo Delgado-Hernández, Jaime Alberto Tavares-Ortega, Samantha Emily González-Muñoz, Clotilde Fuentes-Orozco","doi":"10.1186/s41205-024-00225-y","DOIUrl":"10.1186/s41205-024-00225-y","url":null,"abstract":"<p><strong>Background: </strong>Acute otitis media (AOM) causes inflammation and hearing loss. Ventilation tubes are key in treatment. 3D printing improves prostheses in otorhinolaryngology, offering precision and greater adaptability.</p><p><strong>Materials and methods: </strong>An experimental study was conducted with Wistar rats from July to December 2020. 3D tympanostomy tube models were designed, with technical specifications and tests performed on inexpensive 3D printers. The tympanostomy tube was inserted endoscopically.</p><p><strong>Results: </strong>Procedures were performed on five rats with implants in both ears. Pre-intervention pathologies, such as atical retraction and glue ear, were found. The PLA-printed tympanostomy tube showed improvement after adjustments. Histopathological results revealed significant middle and inner ear damage.</p><p><strong>Conclusion: </strong>In our study, the design and 3D printing of implants fulfilled the desired functions when modified, with a height of 5 mm. Complications included PLA degradation and ear damage. There were no adverse events during observation, highlighting the need for further research on 3D-printed implants.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":"10 1","pages":"22"},"PeriodicalIF":3.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141494496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信