Mengen Ma, Cuiling Zhang, Yujiao Ma, Weile Li, Yao Wang, Shaohang Wu, Chong Liu, Yaohua Mai
{"title":"Efficient and Stable Perovskite Solar Cells and Modules Enabled by Tailoring Additive Distribution According to the Film Growth Dynamics","authors":"Mengen Ma, Cuiling Zhang, Yujiao Ma, Weile Li, Yao Wang, Shaohang Wu, Chong Liu, Yaohua Mai","doi":"10.1007/s40820-024-01538-7","DOIUrl":"10.1007/s40820-024-01538-7","url":null,"abstract":"<div><p>Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method. In this work, we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film, resulting in the differences of additive distribution. We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface, and prepared perovskite solar cells with a certified efficiency of 23.75%. Furthermore, this work also demonstrates an efficiency of 20.18% for the large-area perovskite solar module (PSM) with an aperture area of 60.84 cm<sup>2</sup>. The PSM possesses remarkable continuous operation stability for maximum power point tracking of T<sub>90</sub> > 1000 h in ambient air.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01538-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei-Min Qin, Zhongliang Li, Wen-Xia Su, Jia-Min Hu, Hanqin Zou, Zhixuan Wu, Zhiqin Ruan, Yue-Peng Cai, Kang Li, Qifeng Zheng
{"title":"Porous Organic Cage-Based Quasi-Solid-State Electrolyte with Cavity-Induced Anion-Trapping Effect for Long-Life Lithium Metal Batteries","authors":"Wei-Min Qin, Zhongliang Li, Wen-Xia Su, Jia-Min Hu, Hanqin Zou, Zhixuan Wu, Zhiqin Ruan, Yue-Peng Cai, Kang Li, Qifeng Zheng","doi":"10.1007/s40820-024-01499-x","DOIUrl":"10.1007/s40820-024-01499-x","url":null,"abstract":"<div><p>Porous organic cages (POCs) with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior, yet their feasibility as solid-state electrolytes has never been testified in a practical battery. Herein, we design and fabricate a quasi-solid-state electrolyte (QSSE) based on a POC to enable the stable operation of Li-metal batteries (LMBs). Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC, the resulting POC-based QSSE exhibits a high Li<sup>+</sup> transference number of 0.67 and a high ionic conductivity of 1.25 × 10<sup>−4</sup> S cm<sup>−1</sup> with a low activation energy of 0.17 eV. These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h. As a proof of concept, the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85% capacity retention after 1000 cycles. Therefore, our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems, such as Na and K batteries.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01499-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiaen Wang, Wei Ming, Longfu Chen, Tianliang Song, Moxi Yele, Hao Zhang, Long Yang, Gegen Sarula, Benliang Liang, Luting Yan, Guangsheng Wang
{"title":"MoS2 Lubricate-Toughened MXene/ANF Composites for Multifunctional Electromagnetic Interference Shielding","authors":"Jiaen Wang, Wei Ming, Longfu Chen, Tianliang Song, Moxi Yele, Hao Zhang, Long Yang, Gegen Sarula, Benliang Liang, Luting Yan, Guangsheng Wang","doi":"10.1007/s40820-024-01496-0","DOIUrl":"10.1007/s40820-024-01496-0","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000<ul>\u0000 <li>\u0000 <p>The introduction of MoS<sub>2</sub> generates a “kill three birds with one stone” effect to the original binary MXene/ANF system: lubrication toughening mechanical performance; reduction in secondary reflection pollution of electromagnetic wave; and improvement in the performance of photothermal conversion.</p>\u0000 </li>\u0000 <li>\u0000 <p>After the introduction of MoS<sub>2</sub> into MXene/ANF (60:40), the strain and toughness were increased by 53.5% (from 18.3% to 28.1%) and 61.7% (from 8.9 to 14.5 MJ m<sup>−3</sup>), respectively. Fortunately, the SE<sub>R</sub> decreases by 22.4%, and the photothermal conversion performance was increased by 22.2% from ~ 45 to ~ 55 °C.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01496-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular Structure Tailoring of Organic Spacers for High-Performance Ruddlesden–Popper Perovskite Solar Cells","authors":"Pengyun Liu, Xuejin Li, Tonghui Cai, Wei Xing, Naitao Yang, Hamidreza Arandiyan, Zongping Shao, Shaobin Wang, Shaomin Liu","doi":"10.1007/s40820-024-01500-7","DOIUrl":"10.1007/s40820-024-01500-7","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000<ul>\u0000 <li>\u0000 <p>Organic spacers in Ruddlesden–Popper (RP) perovskites play a vital role in tuning crystallization, charge transport and photovoltaic performance for RP perovskite solar cells (PSCs).</p>\u0000 </li>\u0000 <li>\u0000 <p>Fundamental understanding of the functions of molecular structure of organic spacers is the prerequisite to design high-performance PSCs.</p>\u0000 </li>\u0000 <li>\u0000 <p>This review proposes practical design strategies in seeking RP molecular structure to maximize its photovoltaic performance for PSCs.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01500-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Si Chen, Fang Huang, Lijie Mao, Zhimin Zhang, Han Lin, Qixin Yan, Xiangyu Lu, Jianlin Shi
{"title":"High Fe-Loading Single-Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy","authors":"Si Chen, Fang Huang, Lijie Mao, Zhimin Zhang, Han Lin, Qixin Yan, Xiangyu Lu, Jianlin Shi","doi":"10.1007/s40820-024-01522-1","DOIUrl":"10.1007/s40820-024-01522-1","url":null,"abstract":"<div><h2> Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>Fe single-atom catalysts (h<sup>3</sup>-FNCs) with high loading, high catalytic activity and high stability were synthesized via a method capable of increasing both the metal loading and mass-specific activity by exchanging zinc with iron.</p>\u0000 </li>\u0000 <li>\u0000 <p>The “density effect,” derived from the sufficiently high density of active sites, has been discovered for the first time, leading to a significant alteration in the intrinsic activity of single-atom metal sites.</p>\u0000 </li>\u0000 <li>\u0000 <p>The superior oxidase-like catalytic performance of h<sup>3</sup>-FNCs ensures highly effective bacterial eradication.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01522-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization Strategies of Na3V2(PO4)3 Cathode Materials for Sodium-Ion Batteries","authors":"Jiawen Hu, Xinwei Li, Qianqian Liang, Li Xu, Changsheng Ding, Yu Liu, Yanfeng Gao","doi":"10.1007/s40820-024-01526-x","DOIUrl":"10.1007/s40820-024-01526-x","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000<ul>\u0000 <li>\u0000 <p>Optimization strategies for high-performance Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP) cathode material are well summarized and discussed, including carbon coating or modification, foreign-ion doping or substitution and nanostructure and morphology design.</p>\u0000 </li>\u0000 <li>\u0000 <p>The foreign-ion doping or substitution is highlighted, involving the Na, V, and PO<sub>4</sub><sup>3−</sup> sites, which include single-site doping, multiple-site doping, single-ion doping and multiple-ion doping.</p>\u0000 </li>\u0000 <li>\u0000 <p>Challenges and future perspectives for high-performance NVP cathode material are presented.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01526-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bitgaram Kim, Myeong-Chang Sung, Gwang-Hee Lee, Byoungjoon Hwang, Sojung Seo, Ji-Hun Seo, Dong-Wan Kim
{"title":"Aligned Ion Conduction Pathway of Polyrotaxane-Based Electrolyte with Dispersed Hydrophobic Chains for Solid-State Lithium–Oxygen Batteries","authors":"Bitgaram Kim, Myeong-Chang Sung, Gwang-Hee Lee, Byoungjoon Hwang, Sojung Seo, Ji-Hun Seo, Dong-Wan Kim","doi":"10.1007/s40820-024-01535-w","DOIUrl":"10.1007/s40820-024-01535-w","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>Strategic materials design of polyrotaxane-based electrolytes was suggested by aligning the ion conduction pathways and dispersing hydrophobic chains for solid-state Li–O<sub>2</sub> batteries.</p>\u0000 </li>\u0000 <li>\u0000 <p>Owing to intentional design, solid-state Li–O<sub>2</sub> battery resulted in stable potential over 300 cycles at 25 °C.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01535-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy","authors":"Yijie Wang, Congrui Liu, Chao Fang, Qiuxia Peng, Wen Qin, Xuebing Yan, Kun Zhang","doi":"10.1007/s40820-024-01533-y","DOIUrl":"10.1007/s40820-024-01533-y","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>We classified the carriers that built cancer nanovaccines, discussed their diversified applications and coincidently compared their advantages and disadvantages.</p>\u0000 </li>\u0000 <li>\u0000 <p>Various cellular targets that guide the design and engineering of cancer nanovaccines are categorized and their characteristics and benefits are highlighted.</p>\u0000 </li>\u0000 <li>\u0000 <p>The clinical cases and encountered challenges in cancer nanovaccines are discussed, during which reasonable solutions and future research direction are provided.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01533-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}