Machine Learning Enabled Reusable Adhesion, Entangled Network-Based Hydrogel for Long-Term, High-Fidelity EEG Recording and Attention Assessment.

IF 26.6 1区 材料科学 Q1 Engineering
Kai Zheng, Chengcheng Zheng, Lixian Zhu, Bihai Yang, Xiaokun Jin, Su Wang, Zikai Song, Jingyu Liu, Yan Xiong, Fuze Tian, Ran Cai, Bin Hu
{"title":"Machine Learning Enabled Reusable Adhesion, Entangled Network-Based Hydrogel for Long-Term, High-Fidelity EEG Recording and Attention Assessment.","authors":"Kai Zheng, Chengcheng Zheng, Lixian Zhu, Bihai Yang, Xiaokun Jin, Su Wang, Zikai Song, Jingyu Liu, Yan Xiong, Fuze Tian, Ran Cai, Bin Hu","doi":"10.1007/s40820-025-01780-7","DOIUrl":null,"url":null,"abstract":"<p><p>Due to their high mechanical compliance and excellent biocompatibility, conductive hydrogels exhibit significant potential for applications in flexible electronics. However, as the demand for high sensitivity, superior mechanical properties, and strong adhesion performance continues to grow, many conventional fabrication methods remain complex and costly. Herein, we propose a simple and efficient strategy to construct an entangled network hydrogel through a liquid-metal-induced cross-linking reaction, hydrogel demonstrates outstanding properties, including exceptional stretchability (1643%), high tensile strength (366.54 kPa), toughness (350.2 kJ m<sup>-3</sup>), and relatively low mechanical hysteresis. The hydrogel exhibits long-term stable reusable adhesion (104 kPa), enabling conformal and stable adhesion to human skin. This capability allows it to effectively capture high-quality epidermal electrophysiological signals with high signal-to-noise ratio (25.2 dB) and low impedance (310 ohms). Furthermore, by integrating advanced machine learning algorithms, achieving an attention classification accuracy of 91.38%, which will significantly impact fields like education, healthcare, and artificial intelligence.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":"281"},"PeriodicalIF":26.6000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-025-01780-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Due to their high mechanical compliance and excellent biocompatibility, conductive hydrogels exhibit significant potential for applications in flexible electronics. However, as the demand for high sensitivity, superior mechanical properties, and strong adhesion performance continues to grow, many conventional fabrication methods remain complex and costly. Herein, we propose a simple and efficient strategy to construct an entangled network hydrogel through a liquid-metal-induced cross-linking reaction, hydrogel demonstrates outstanding properties, including exceptional stretchability (1643%), high tensile strength (366.54 kPa), toughness (350.2 kJ m-3), and relatively low mechanical hysteresis. The hydrogel exhibits long-term stable reusable adhesion (104 kPa), enabling conformal and stable adhesion to human skin. This capability allows it to effectively capture high-quality epidermal electrophysiological signals with high signal-to-noise ratio (25.2 dB) and low impedance (310 ohms). Furthermore, by integrating advanced machine learning algorithms, achieving an attention classification accuracy of 91.38%, which will significantly impact fields like education, healthcare, and artificial intelligence.

机器学习支持可重复使用的粘附,基于纠缠网络的水凝胶,用于长期,高保真脑电图记录和注意力评估。
由于其高机械顺应性和优异的生物相容性,导电水凝胶在柔性电子产品中表现出巨大的应用潜力。然而,随着对高灵敏度、优异的机械性能和强粘附性能的需求不断增长,许多传统的制造方法仍然复杂且昂贵。在此,我们提出了一种简单有效的策略,通过液体金属诱导的交联反应构建纠缠网络水凝胶,水凝胶具有优异的性能,包括优异的拉伸性(1643%),高拉伸强度(366.54 kPa),韧性(350.2 kJ m-3),以及相对较低的机械滞后。该水凝胶具有长期稳定的可重复使用附着力(104kpa),可与人体皮肤形成稳定的保形附着力。这种能力使其能够有效捕获高质量的表皮电生理信号,具有高信噪比(25.2 dB)和低阻抗(310欧姆)。此外,通过整合先进的机器学习算法,实现了91.38%的注意力分类准确率,这将对教育、医疗、人工智能等领域产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信