{"title":"Solar-blind ultraviolet photodetector derived from direct carrier transition beyond the bandgap of CdPS3 single crystals","authors":"Xinyun Zhou, Shuo Liu, Jiacheng Yang, Junda Yang, Fen Zhang, Le Yuan, Ruiying Ma, Jiaqi Shi, Qinglin Xia, Mianzeng Zhong","doi":"10.1007/s12274-024-6941-6","DOIUrl":"https://doi.org/10.1007/s12274-024-6941-6","url":null,"abstract":"<p>Wide-bandgap semiconductors have demonstrated considerable potential for fabricating solar-blind ultraviolet (SBUV) photodetectors, which are extensively used in both civilian and military applications. Despite this promise, the limited variety of semiconductors with suitable bandgaps hampers the advancement of high-performance SBUV detectors. In this study, we synthesized CdPS<sub>3</sub> transparent single crystals using the chemical vapor transport (CVT) method. Density functional theory (DFT) calculations suggest that the bandgap of CdPS<sub>3</sub> decreases as the material’s thickness increases, a finding corroborated by subsequent absorption spectra and photoelectric response measurements. The as-prepared CdPS<sub>3</sub> nanosheets were employed as channels in photodetectors, demonstrating outstanding photoelectric performance in the solar-blind ultraviolet range (at 254 and 275 nm) with high responsivity (0.3 A/W), high specific detectivity (5.5 × 10<sup>9</sup> Jones), rapid response speed (2.6 ms/3.4 ms), and exceptionally low dark current (2 pA). It is noteworthy that these nanosheets exhibit almost no sensitivity to 365 nm and visible light irradiation, attributable to the direct carrier transition beyond the broad bandgap in CdPS<sub>3</sub>. Furthermore, high-quality imaging was achieved under different gate voltages using 275 nm ultraviolet light, underscoring the potential of CdPS<sub>3</sub> as a new material for high-performance SBUV optoelectronic detection.\u0000</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"38 1","pages":""},"PeriodicalIF":9.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano ResearchPub Date : 2024-09-03DOI: 10.1007/s12274-024-6928-3
Chan Wang, Yuan Fang, Dongrun Zhou, Chenxi Wu, Han Zhu, Qijun Song
{"title":"Surface oxidation of carbon dots enables highly selective and sensitive chemiluminescence detection of hydroxyl radical","authors":"Chan Wang, Yuan Fang, Dongrun Zhou, Chenxi Wu, Han Zhu, Qijun Song","doi":"10.1007/s12274-024-6928-3","DOIUrl":"10.1007/s12274-024-6928-3","url":null,"abstract":"<div><p>The rapid quantification of hydroxyl radical (·OH) in real samples is a great challenge due to its highly reactive nature and the potential interferences from other coexisting reactive oxygen species (ROS). Herein, a chemiluminescence (CL) probe (ox-CDs) was rationally developed for the detection of ·OH through controlled oxidation treatment of original CDs (o-CDs) with H<sub>2</sub>O<sub>2</sub>. Post-oxidation of CDs can reduce the surface defects or functional groups on the CDs, exposing reactive sites capable of effectively reacting with ·OH. The chemical energy generated from redox reaction between ·OH and the ox-CDs can be efficiently utilized to generate strong and selective CL responses to ·OH without interferences from other ROS. Thus, a highly selective and sensitive CL method with a linear range from 0.01 to 150 μM and a detection limit of 3 nM was developed, which was successfully applied for monitoring the ·OH production from cigarette and mosquito coil smoke.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9275 - 9283"},"PeriodicalIF":9.5,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano ResearchPub Date : 2024-08-31DOI: 10.1007/s12274-024-6944-3
Ke Cao, Yan Zhou, Shanshan Lv, Mengmeng Feng, Changjin Qian, Zheng Chen
{"title":"Cobalt-manganese bimetallic organic frameworks catalyzed solvent-free oxidation of benzyl C-H bonds with O2 as sole oxidant","authors":"Ke Cao, Yan Zhou, Shanshan Lv, Mengmeng Feng, Changjin Qian, Zheng Chen","doi":"10.1007/s12274-024-6944-3","DOIUrl":"10.1007/s12274-024-6944-3","url":null,"abstract":"<div><p>The selective oxidation of hydrocarbons can be used to produce oxygen-containing functional compounds such as alcohols, aldehydes or ketones and its efficient and green conversion lies in the development of efficient catalysts that activate C-H bonds and O<sub>2</sub> simultaneously. In this work, the bimetallic organic framework (CoMnBDC) material with morphology of stacked nanosheets was synthesized using terephthalic acid as ligands to coordinate with Co<sup>2+</sup> and Mn<sup>2+</sup> cations under solvothermal conditions. As revealed by spectroscopic characterizations, the electron transfer from Mn to Co in the CoMnBDC resulted in the reduction of the Co average oxidation state and increase of the Mn average oxidation state. The CoMnBDC nanosheets were used as catalyst in catalytic oxidation of ethylbenzene, in which the redox effect promotes the effective electron transfer, the activation of O<sub>2</sub> and benzyl C-H bond. The 96.2% conversion of ethylbenzene and 98.0% selectivity towards acetophenone could be obtained with oxygen as sole oxidant and solvent-free condition. The excellent catalytic performance is related to the structure of CoMnBDC and is also the best when compared with reported results. Various types of aromatic hydrocarbons containing benzyl C-H bonds can be effectively oxidized by CoMnBDC to produce corresponding ketone products. The density functional theory (DFT) calculation revealed that the redox effect leads to the relative enrichment of electrons on Co in CoMnBDC, which is conducive to the activation of O<sub>2</sub>; Mn with higher oxidation state is beneficial for the adsorption of ethylbenzene and activation of C-H bonds. The CoMnBDC has a lower energy barrier for transition state, making it easier for the ethylbenzene oxidation to produce acetophenone.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9532 - 9539"},"PeriodicalIF":9.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano ResearchPub Date : 2024-08-31DOI: 10.1007/s12274-024-6911-z
Junpeng Chen, Chensheng Dai, Yuxuan Zheng, Ding Zhao, Jie Bao
{"title":"All-quantum-dot information system","authors":"Junpeng Chen, Chensheng Dai, Yuxuan Zheng, Ding Zhao, Jie Bao","doi":"10.1007/s12274-024-6911-z","DOIUrl":"https://doi.org/10.1007/s12274-024-6911-z","url":null,"abstract":"<p>In 2023, the Nobel Prize in Chemistry was awarded to Bawendi, Brus, and Ekimov, three scientists who have made great contributions to the discovery and synthesis of quantum dots (QDs), heralding a new era for these nanomaterials. The inception of QDs dates back more than 40 years, during which the theory of QDs has been continuously refined, the manufacturing techniques have significantly flourished, and the applications have largely expanded. Recently, QDs have become important optical devices, playing key roles in numerous fields such as display, energy, and biomedical applications. To celebrate the outstanding achievements of QDs over the years, we dedicate this paper to QDs. In the information field, QDs have been extensively utilized to design devices related to domains like transmission and storage, achieving many breakthroughs in performance. This paper proposes a comprehensive set of methodologies and paradigms for designing information systems using QDs. The proposed approach embodies two characteristics of QDs: 1) QDs play a central role in every aspect of the system and possess the capability to construct an all-quantum-dot (All-QD) information system. 2) QDs possess tunability and wavelength flexibility, which can significantly enhance the information density. Finally, we construct a prototype model of an All-QD information system and validate its feasibility through simulation. We believe that with the continued development of quantum dot (QD) technology, the realization of an All-QD information system is on the horizon.</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"7 1","pages":""},"PeriodicalIF":9.9,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bimetallic site substitution of NiCoP nanoneedles as bifunctional electrocatalyst for boosted water splitting","authors":"Ya Gao, Yuhui Qiao, Xuanrong Li, Chengyu Huang, Jing Zhang, Yirong Wang, Xingli Zou, Zhonghong Xia, Xinxin Yang, Xionggang Lu, Yufeng Zhao","doi":"10.1007/s12274-024-6952-3","DOIUrl":"10.1007/s12274-024-6952-3","url":null,"abstract":"<div><p>The bimetallic nickel-cobalt phosphide (NiCoP) has been confirmed as an efficient electrocatalyst in water splitting. But little attention is paid to the selectivity and affinity of metal sites on hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, we report a trace-Zn-doping (2.18 wt.%) NiCoP (Zn-NiCoP) whereby the nanoparticles self-aggregated to form elongated nanoneedles. We discover that both Co and Ni sites can be replaced by Zn. The Co substitution improves HER, while the Ni substitution dramatically reduces the energy barrier of the rate-determining step (*O → *OOH). The negative shift of d-band centers after Zn doping ameliorates the intermediate desorption. Therefore, Zn-NiCoP demonstrates superior electrocatalytic activity with overpotentials of 48 and 240 mV for HER and OER at 10 and 50 mA·cm<sup>−2</sup>, respectively. The cell voltage with Zn-NiCoP as both anode and cathode in water splitting was as low as 1.35 V at 10 mA·cm<sup>−2</sup>.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9540 - 9549"},"PeriodicalIF":9.5,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical investigations on hydroxyl carbon precursor fueled growth of graphene on transition metal substrates","authors":"Chaojie Yu, Haiyang Liu, Xiaoli Sun, Jianjian Shi, Zhiyu Jing, Xiucai Sun, Yuqing Song, Wanjian Yin, Guangping Zhang, Luzhao Sun, Zhongfan Liu","doi":"10.1007/s12274-024-6882-0","DOIUrl":"https://doi.org/10.1007/s12274-024-6882-0","url":null,"abstract":"<p>Transition metal catalyzed chemical vapor deposition (CVD) is considered as the most promising approach to synthesize highquality graphene films, and low-temperature growth of defect-free graphene films is long-term challenged because of the high energy barrier for precursor dissociation and graphitization. Reducing the growth temperature can also bring advantages on wrinkle-free graphene films owing to the minimized thermal expansion coefficient mismatch. This work focuses on density functional theory (DFT) calculations of the carbon source precursor with hydroxyl group, especially CH<sub>3</sub>OH, on low-temperature CVD growth of graphene on Cu and CuNi substrate. We calculated all the possible cleavage paths for CH<sub>3</sub>OH on transition metal substrates. The results show that, firstly, the cleavage barriers of CH<sub>3</sub>OH on transition metal substrates are slightly lower than those of CH<sub>4</sub>, and once CO appears, it is difficult to break the C-O bond. Secondly, the CO promotes a better formation and retention of perfect rings in the early stage of graphene nucleation and reduces the edge growth barriers. Thirdly, these deoxidation barriers of CO are reduced after CO participates in graphene edge growth. This paper provides a strategy for the lowtemperature growth of wrinkles-free graphene on transition metal substrates using CH<sub>3</sub>OH.</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"6 1","pages":""},"PeriodicalIF":9.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano ResearchPub Date : 2024-08-30DOI: 10.1007/s12274-024-6937-2
Lin Sun, Yang Liu, Liyan Wang, Zhidong Chen, Zhong Jin
{"title":"Stabilizing porous micro-sized silicon anodes via construction of tough composite interface networks for high-energy-density lithium-ion batteries","authors":"Lin Sun, Yang Liu, Liyan Wang, Zhidong Chen, Zhong Jin","doi":"10.1007/s12274-024-6937-2","DOIUrl":"10.1007/s12274-024-6937-2","url":null,"abstract":"<div><p>Compared to nanostructured Si/C materials, micro-sized Si/C anodes for lithium-ion batteries (LIBs) have gained significant attention in recent years due to their higher volumetric energy density, reduced side reactions and low costs. However, they suffer from more severe volume expansion effects, making the construction of stable micro-sized Si/C anode materials crucial. In this study, we proposed a simple wet chemistry method to obtain porous micro-sized silicon (μP-Si) from waste AlSi alloys. Then, the μP-Si@carbon nanotubes (CNT)@C composite anode with high tap density was prepared by wrapping with CNT and coated with polyvinylpyrrolidone (PVP)-derived carbon. Electrochemical tests and finite element (FEM) simulations revealed that the introduction of CNTs and PVP-derived carbon synergistically optimize the stability and overall performance of the μP-Si electrode via construction of tough composite interface networks. As an anode material for LIBs, the μP-Si@CNT@C electrode exhibits boosted reversible capacity (∼ 3500 mAh·g<sup>−1</sup> at 0.2 A·g<sup>−1</sup>), lifetime and rate performance compared to pure μP-Si. Further full cell assembly and testing also indicates that μP-Si@CNT@C is a highly promising anode, with potential applications in future advanced LIBs. It is expected that this work can provide valuable insights for the development of micro-sized Si-based anode materials for high-energy-density LIBs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9737 - 9745"},"PeriodicalIF":9.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photosensitizer-assisted direct 2D patterning and 3D printing of colloidal quantum dots","authors":"Wenyue Qing, Yilong Si, Mingfeng Cai, Likuan Zhou, Longjia Wu, Zhengwei Hou, Dan Liu, Xiaoli Tian, Wangyu Liu, Linhan Lin, Hao Zhang","doi":"10.1007/s12274-024-6947-0","DOIUrl":"https://doi.org/10.1007/s12274-024-6947-0","url":null,"abstract":"<p>Direct photopatterning is a powerful strategy for patterning colloidal quantum dots (QDs) for their integration in various electronic and optoelectronic devices. However, ultraviolet (UV) exposure required for QD patterning, especially those with short wavelength (e.g., deep UV light), can degrade the photo-, and electroluminescence, and other properties of patterned QDs. Here we develop a photosensitizer-assisted approach for direct photopatterning of QDs with h-line (centered at 405 nm) UV light and better preservation of their luminescent properties. This approach uses a photosensitizer that can absorb the h-line UV light and transfer the energy to activate bisazide-based crosslinkers via Dexter energy transfer. Uniform, high-resolution (smallest feature size, 2 µm), and full-color patterns of red, green, and blue QD layers can be achieved. The patterned QD layers maintain up to ∼ 90% of their original photoluminescent quantum yields, comparing favorably with those (< 60%) of QDs patterned without photosensitizers. We further extended the strategy to the direct three-dimensional (3D) printing of QDs. This photosensitizer-assisted approach offers a new way for direct two-dimensional (2D) photopatterning and 3D printing of colloidal QDs, with implications in building high-performance QD optoelectronic devices.\u0000</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"26 1","pages":""},"PeriodicalIF":9.9,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Collaborative effect between single-atom Re and S vacancy on modulating localized electronic structure of MoS2 catalysts for alkaline hydrogen evolution","authors":"Yajing Zhang, Xingkun Wang, Xiangju Song, Heqing Jiang","doi":"10.1007/s12274-024-6909-x","DOIUrl":"10.1007/s12274-024-6909-x","url":null,"abstract":"<div><p>Optimizing the catalytic activity and stability of molybdenum disulfide (MoS2) towards alkaline hydrogen evolution reaction (HER) is significant for sustaining green hydrogen. A moderate localized electronic structure of active sites plays a crucial role in determining the activity and stability of the catalysts, yet how to construct such localized electronic structure still remains indeterminacy. Enlightened by theoretical prediction, herein, the introduction of both single-atom Re and the adjacent S vacancy in MoS<sub>2</sub> (denoted as Re-MoS<sub>2</sub>-Vs) exhibits collaborative effect on regulating the localized electronic structure of active sites (viz. Re-(S, Vs)-Mo). Such regulated electronic structure helps to decrease the energy barrier of the water dissociation and optimize hydrogen adsorption energy for enhancing alkaline HER performance. Most importantly, Mo-S bonds in the above local Re-(S, Vs)-Mo configurations are also strengthened for preventing the leaching of Mo and S atoms and then ensuring the long-time stability. Consequently, the deliberately designed Re-MoS<sub>2</sub>-Vs with a Re coordination number of ~ 5.0 is experimentally verified to exhibit a comparable electrocatalytic performance and robust operational stability over 120 h. This strategy provides a promising guidance for modulating the electronic structure of MoS2 based catalysts via double-tuning atomic-scale local configuration for HER applications.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9507 - 9517"},"PeriodicalIF":9.5,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nano ResearchPub Date : 2024-08-29DOI: 10.1007/s12274-024-6964-z
Yang Li, Jiaoyan Li, Chunhua Lu, Jiahui Kou, Zhongzi Xu
{"title":"Facile fabrication of large-area hierarchical plasmonic cavities with broadband plasmon resonance for enhanced photocatalytic hydrogen evolution","authors":"Yang Li, Jiaoyan Li, Chunhua Lu, Jiahui Kou, Zhongzi Xu","doi":"10.1007/s12274-024-6964-z","DOIUrl":"10.1007/s12274-024-6964-z","url":null,"abstract":"<div><p>Integrating hierarchical plasmonic cavities into photocatalysis offers a promising avenue for expanding the light utilization range to cover the entire solar spectrum. However, fabricating these nanostructures with seamless size transitions for a wide plasmon resonant range remains technically challenging, requiring precise nanofabrication control and often relying on expensive and laborious techniques like e-beam lithography and reactive ion etching. Herein, a one-step forming strategy was explored to fabricate simple yet hierarchical plasmonic cavities featuring the surface nanodome array-integrated plasmonic Fabry–Pérot cavity through a facile large-area nanoimprinting method. This design leverages a uniform feature size and periodic arrangement to broaden the light utilization range of TiO<sub>2</sub> across the entire solar spectrum (200–2500 nm). It consists of an upper nanodome array cavity with vertically continuous graded sizes for broadband absorption (200–1500 nm), coupled with a bottom plate cavity that enlarges the overall cavity size to extend the range to 2500 nm. Remarkably, simply adjusting the thickness of the plate cavity can tune the resonant position, eliminating the need for expensive mold modifications. When combined with TiO<sub>2</sub>, this hierarchical plasmonic cavity significantly enhances the photocatalytic hydrogen evolution rate to 36.3 µmol/h, achieving a remarkable 9.8-fold increase compared to pure TiO<sub>2</sub> under full-spectrum illumination. This approach offers a convenient and inexpensive alternative to sophisticated nanofabrication techniques for large-area hierarchical plasmonic cavities with broadband plasmon resonance to enhance the photocatalytic hydrogen evolution.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 11","pages":"9573 - 9584"},"PeriodicalIF":9.5,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142218458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}