Pressure-driven layer-dependent phase transitions and enhanced interlayer coupling in PdSe2 crystals

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Junnan Ding, Xing Xie, Xinyu Ouyang, Junying Chen, Fangping Ouyang, Zongwen Liu, Jian-Tao Wang, Jun He, Yanping Liu
{"title":"Pressure-driven layer-dependent phase transitions and enhanced interlayer coupling in PdSe2 crystals","authors":"Junnan Ding, Xing Xie, Xinyu Ouyang, Junying Chen, Fangping Ouyang, Zongwen Liu, Jian-Tao Wang, Jun He, Yanping Liu","doi":"10.1007/s12274-024-6927-4","DOIUrl":null,"url":null,"abstract":"<p>Pressure exerts a profound influence on atomic configurations and interlayer interactions, thereby modulating the electronic and structural properties of materials. While high pressure has been observed to induce a structural phase transition in bulk PdSe<sub>2</sub> crystals, leading to a transition from semiconductor to metal, the high-pressure behavior of few-layer PdSe<sub>2</sub> remains elusive. Here, employing diamond anvil cell (DAC) techniques and high-pressure Raman spectroscopy, we investigate the structural evolution of layer-dependent PdSe<sub>2</sub> under high pressure. We reveal that pressure significantly enhances interlayer coupling in PdSe<sub>2</sub>, driving structural phase transitions from an orthorhombic to a cubic phase. We demonstrate that PdSe<sub>2</sub> crystals exhibit distinct layer-dependent pressure thresholds during the phase transition, with the decrease of transition pressure as the thickness of PdSe<sub>2</sub> increases. Furthermore, our results of polarized Raman spectra confirm a reduction in material anisotropy with increasing pressure. This study offers crucial insights into the structural evolution of layer-dependent van der Waals materials under pressure, advancing our understanding of their pressure-induced behaviors.\n</p>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"59 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12274-024-6927-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pressure exerts a profound influence on atomic configurations and interlayer interactions, thereby modulating the electronic and structural properties of materials. While high pressure has been observed to induce a structural phase transition in bulk PdSe2 crystals, leading to a transition from semiconductor to metal, the high-pressure behavior of few-layer PdSe2 remains elusive. Here, employing diamond anvil cell (DAC) techniques and high-pressure Raman spectroscopy, we investigate the structural evolution of layer-dependent PdSe2 under high pressure. We reveal that pressure significantly enhances interlayer coupling in PdSe2, driving structural phase transitions from an orthorhombic to a cubic phase. We demonstrate that PdSe2 crystals exhibit distinct layer-dependent pressure thresholds during the phase transition, with the decrease of transition pressure as the thickness of PdSe2 increases. Furthermore, our results of polarized Raman spectra confirm a reduction in material anisotropy with increasing pressure. This study offers crucial insights into the structural evolution of layer-dependent van der Waals materials under pressure, advancing our understanding of their pressure-induced behaviors.

Abstract Image

PdSe2 晶体中压力驱动的层间相变和增强的层间耦合
压力对原子构型和层间相互作用产生深远影响,从而改变材料的电子和结构特性。虽然已观察到高压能诱导块状 PdSe2 晶体发生结构相变,从而实现从半导体到金属的转变,但对少层 PdSe2 的高压行为仍然一无所知。在此,我们利用金刚石砧电池(DAC)技术和高压拉曼光谱,研究了高压下层间依赖性 PdSe2 的结构演变。我们发现,压力大大增强了 PdSe2 的层间耦合,推动了从正方相到立方相的结构相变。我们证明,在相变过程中,PdSe2 晶体表现出明显的层间压力阈值,随着 PdSe2 厚度的增加,相变压力降低。此外,我们的偏振拉曼光谱结果证实,随着压力的增加,材料的各向异性会降低。这项研究为我们深入了解压力下依赖层的范德瓦耳斯材料的结构演变提供了重要依据,从而加深了我们对其压力诱导行为的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Research
Nano Research 化学-材料科学:综合
CiteScore
14.30
自引率
11.10%
发文量
2574
审稿时长
1.7 months
期刊介绍: Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信