Materials for Renewable and Sustainable Energy最新文献

筛选
英文 中文
Ambient fabrication of perovskite solar cells through delay-deposition technique 延迟沉积法制备钙钛矿太阳能电池
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2021-06-07 DOI: 10.1007/s40243-021-00196-8
Puteri Nor Aznie Fahsyar, Norasikin Ahmad Ludin, Noor Fadhilah Ramli, Mohamad Firdaus Mohamad Noh, Rozan Mohamad Yunus, Suhaila Sepeai, Mohd Adib Ibrahim, Mohd Asri Teridi, Kamaruzzaman Sopian
{"title":"Ambient fabrication of perovskite solar cells through delay-deposition technique","authors":"Puteri Nor Aznie Fahsyar,&nbsp;Norasikin Ahmad Ludin,&nbsp;Noor Fadhilah Ramli,&nbsp;Mohamad Firdaus Mohamad Noh,&nbsp;Rozan Mohamad Yunus,&nbsp;Suhaila Sepeai,&nbsp;Mohd Adib Ibrahim,&nbsp;Mohd Asri Teridi,&nbsp;Kamaruzzaman Sopian","doi":"10.1007/s40243-021-00196-8","DOIUrl":"https://doi.org/10.1007/s40243-021-00196-8","url":null,"abstract":"<p>The establishment of perovskite solar cells (PSCs) in terms of their power-conversion efficiency (PCE) over silicon-based solar cells is undeniable. The state-of-art of easy device fabrications of PSCs has enabled them to rapidly gain a place in third-generation photovoltaic technology. Numerous obstacles remain to be addressed in device efficiency and stability. Low performance owing to easily degraded surface and deterioration of perovskite film quality resulting from humidity are issues that often arise. This work explored a new approach to producing high-quality perovskite films prepared under high relative humidity (RH?=?40%–50%). In particular, the ubiquitous 4-tert-butylpyridine (tBp) was introduced into lead iodide (PbI<sub>2</sub>) precursor as an additive, and the films were fabricated using a two-step deposition method followed by a delay-deposition technique of methylammonium iodide (MAI). High crystallinity and controlled nucleation of MAI were needed, and this approach revealed the significance of time control to ensure high-quality films with large grain size, high crystallography, wide coverage on substrate, and precise and evenly coupled MAI molecules to PbI<sub>2</sub> films. Compared with the two-step method without time delay, a noticeable improvement in PCE from 3.2 to 8.3% was achieved for the sample prepared with 15?s time delay. This finding was primarily due to the significant enhancement in the open-circuit voltage, short-circuit current, and fill factor of the device. This strategy can effectively improve the morphology and crystallinity of perovskite films, as well as reduce the recombination of photogenerated carriers and increase of current density of devices, thereby achieving improved photovoltaic performance.</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"10 2","pages":""},"PeriodicalIF":4.5,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-021-00196-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4305366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Stability, reusability, and equivalent circuit of TiO2/treated metakaolinite-based dye-sensitized solar cell: effect of illumination intensity on Voc and Isc values TiO2/处理偏高岭石染料敏化太阳能电池的稳定性、可重用性和等效电路:光照强度对Voc和Isc值的影响
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2021-06-03 DOI: 10.1007/s40243-021-00195-9
Winda Rahmalia, Imelda H. Silalahi, Thamrin Usman, Jean-François Fabre, Zéphirin Mouloungui, Georges Zissis
{"title":"Stability, reusability, and equivalent circuit of TiO2/treated metakaolinite-based dye-sensitized solar cell: effect of illumination intensity on Voc and Isc values","authors":"Winda Rahmalia,&nbsp;Imelda H. Silalahi,&nbsp;Thamrin Usman,&nbsp;Jean-François Fabre,&nbsp;Zéphirin Mouloungui,&nbsp;Georges Zissis","doi":"10.1007/s40243-021-00195-9","DOIUrl":"https://doi.org/10.1007/s40243-021-00195-9","url":null,"abstract":"<p>In this research, treated metakaolinite (TMK) was introduced into the TiO<sub>2</sub> photoelectrode to fabricated dye-sensitized solar cells (DSSCs). The photovoltaic cells have four main natural components, i.e., a photosensitizer (carotenoid bixin), photoelectrode (TiO<sub>2</sub>/kaolinite), electrolyte (glycerine carbonate derivative), and counter-electrode (carbon). Their stability, reusability, and equivalent circuit were studied. The presence of 5% of TMK in anatase TiO<sub>2</sub> paste decreased the TiO<sub>2</sub> band gap from 3.21 to 3.16?eV. The result showed that the presence of 5% of TMK in TiO<sub>2</sub> paste was more favorable to obtain higher energy conversion efficiency. Under a light intensity of 200?W/m<sup>2</sup>, it produced an energy conversion yield of 0.086%. The combination of the electrolyte and the TMK demonstrated a synergistic effect to improve the electrical properties of the DSSC. The energy storage function worked well until the third day of analysis. The DSSC based on TiO<sub>2</sub>/TMK photoelectrode exhibited 16 times better stability than pure TiO<sub>2</sub>-based photoelectrode. The Faraday charge transfer processes showed that the TiO<sub>2</sub>/TMK photoelectrode is not in direct contact with the carbon counter-electrode.</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"10 2","pages":""},"PeriodicalIF":4.5,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-021-00195-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4129793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Mechanisms of CO2 reduction into CO and formic acid on Fe (100): a DFT study Fe(100)上CO2还原成CO和甲酸的机理:DFT研究
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2021-04-29 DOI: 10.1007/s40243-021-00194-w
Caroline R. Kwawu, Albert Aniagyei, Destiny Konadu, Boniface Yeboah Antwi
{"title":"Mechanisms of CO2 reduction into CO and formic acid on Fe (100): a DFT study","authors":"Caroline R. Kwawu,&nbsp;Albert Aniagyei,&nbsp;Destiny Konadu,&nbsp;Boniface Yeboah Antwi","doi":"10.1007/s40243-021-00194-w","DOIUrl":"https://doi.org/10.1007/s40243-021-00194-w","url":null,"abstract":"<p>Understanding the mechanism of CO<sub>2</sub> reduction on iron is crucial for the design of more efficient and cheaper iron electrocatalyst for CO<sub>2</sub> conversion. In the present study, we have employed spin-polarized density functional theory calculations within the generalized gradient approximation (DFT-GGA) to elucidate the mechanism of CO<sub>2</sub> reduction into carbon monoxide and formic acid on the Fe (100) facet. We also sort to understand the transformations of the other isomers of adsorbed CO<sub>2</sub> on iron as earlier mechanistic studies are centred on the transformations of the C<sub>2v</sub> geometry alone and not the other possible conformations i.e., flip-C<sub>2v</sub> and Cs modes. Two alternative reduction routes were considered i.e., the direct CO<sub>2</sub> dissociation against the hydrogen-assisted CO<sub>2</sub> transformation through formate and carboxylate into CO and formic acid. Our results show that CO<sub>2</sub> in the C<sub>2v</sub> mode is the precursor to the formation of both products i.e., CO and formic acid. Both the formation and transformation of CO<sub>2</sub> in the Cs and flip-C<sub>2v</sub> is challenging kinetically and thermodynamically compared to the C<sub>2v</sub> mode. The formic acid formation is favoured over CO via the reverse water gas shift reaction mechanism on Fe (100). Both formic acid formation and CO formation will proceed via the carboxylate intermediate since formate is a stable intermediate whose transformation into formic acid is challenging both kinetically and thermodynamically.</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"10 2","pages":""},"PeriodicalIF":4.5,"publicationDate":"2021-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-021-00194-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5108850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Ampoule method fabricated sulfur vacancy-rich N-doped ZnS electrodes for ammonia production in alkaline media 安瓿法制备了富硫空位氮掺杂ZnS电极,用于碱性制氨
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2021-04-12 DOI: 10.1007/s40243-021-00193-x
Da-Ming Feng, Ying Sun, Zhong-Yong Yuan, Yang Fu, Baohua Jia, Hui Li, Tianyi Ma
{"title":"Ampoule method fabricated sulfur vacancy-rich N-doped ZnS electrodes for ammonia production in alkaline media","authors":"Da-Ming Feng,&nbsp;Ying Sun,&nbsp;Zhong-Yong Yuan,&nbsp;Yang Fu,&nbsp;Baohua Jia,&nbsp;Hui Li,&nbsp;Tianyi Ma","doi":"10.1007/s40243-021-00193-x","DOIUrl":"https://doi.org/10.1007/s40243-021-00193-x","url":null,"abstract":"<p>The electrochemical production of green and low-cost ammonia requests the development of high-performance electrocatalysts. In this work, the ampoule method was applied to modulate the surface of the zinc electrode by implanting defects and low-valent active sites. The N-doped ZnS electrocatalyst was thus generated by sulfurization with thiourea and applied for electrocatalytic nitrogen reduction reaction (ENRR). Given the rich sulfur vacancies and abundant Zn-N active sites on the surface, excellent catalytic activity and selectivity were obtained, with an NH<sub>3</sub> yield rate of 2.42?×?10<sup>–10</sup>?mol?s<sup>?1</sup>?cm<sup>?2</sup> and a Faradaic efficiency of 7.92% at ??0.6?V vs. RHE in 0.1?M KOH solution. Moreover, the as-synthesized zinc electrode exhibits high stability after five recycling tests and a 24?h potentiostatic test. The comparison with Zn foil, non-doping ZnS/Zn and recent metal sulfide electrocatalysts further demonstrated advanced catalytic performance of N@ZnS/Zn for ENRR. By simple synthesis, S vacancies, and N-doping defects, this promising electrocatalyst would represent a good addition to the arena of transition-metal-based catalysts with superior performance in ENRR.</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"10 2","pages":""},"PeriodicalIF":4.5,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-021-00193-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4783421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Enhancing the electrochemical properties of a nickel–cobalt-manganese ternary hydroxide electrode using graphene foam for supercapacitors applications 利用泡沫石墨烯增强超级电容器用镍钴锰三元氢氧电极的电化学性能
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2021-03-15 DOI: 10.1007/s40243-021-00192-y
V. N. Kitenge, K. O. Oyedotun, O. Fasakin, D. J. Tarimo, N. F. Sylla, X. Van Heerden, N. Manyala
{"title":"Enhancing the electrochemical properties of a nickel–cobalt-manganese ternary hydroxide electrode using graphene foam for supercapacitors applications","authors":"V. N. Kitenge,&nbsp;K. O. Oyedotun,&nbsp;O. Fasakin,&nbsp;D. J. Tarimo,&nbsp;N. F. Sylla,&nbsp;X. Van Heerden,&nbsp;N. Manyala","doi":"10.1007/s40243-021-00192-y","DOIUrl":"https://doi.org/10.1007/s40243-021-00192-y","url":null,"abstract":"<p>This study has investigated the effect of the incorporation of graphene foam (GF) into the matrix of a ternary transition-metals hydroxide containing nickel, cobalt, and manganese for optimal electrochemical performances as electrodes for supercapacitors applications. An adopted simple, low-cost co-precipitation synthesis method involved the loading a mass of the ternary metal hydroxides (NiCoMn-TH) onto various GF mass loading so as to find ints effect on the electrochemical properties of the hydroxides. Microstructural and chemical composition of the various composite materials were investigated by employing scanning/transmission electron microscopy (SEM/TEM), x-ray diffraction (XRD), Raman spectroscopy, and N<sub>2</sub> physisorption analysis among others. Electrochemical performances of the NiCoMn-TH/200?mg GF composite material evaluated in a three-electrode system using 1?M KOH solution revealed a maximum specific capacity around 178.6 mAh g<sup>?1</sup> compared to 76.2 mAh g<sup>?1</sup> recorded for the NiCoMn-TH pristine material at a specific current of 1 A g<sup>?1</sup>. The best mass loading of GF nanomaterial (200?mg GF), was then utilised as a positive electrode material for the design of a novel hybrid device. An assembled hybrid NiCoMn-TH/200?mg GF//CSDAC device utilizing the NiCoMn-TH/200?mg GF and activated carbon derived from the cocoa shell (CSDAC) as a positive and negative electrode, respectively, demonstrated a sustaining specific capacity of 23.4 mAh g<sup>?1</sup> at a specific current of 0.5 A g<sup>?1</sup>. The device also yielded sustaining a specific energy and power of about 22.32 Wh kg<sup>?1</sup> and 439.7?W?kg<sup>?1</sup>, respectively. After a cycling test of over 15,000 cycles, the device could prove a coulombic efficiency of?~?99.9% and a capacity retention of around 80% within a potential range of 0.0–1.6?V at a specific current of 3?A?g<sup>?1</sup>. These results have demonstrated the prodigious electrochemical potentials of the as-synthesized material and its capability to be utilized as an electrode for supercapacitor applications.</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"10 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-021-00192-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4906089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Development of flexible textile aluminium-air battery prototype 柔性纺织铝-空气电池样机的研制
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2021-02-03 DOI: 10.1007/s40243-021-00191-z
Aleksandrs Vališevskis, Uģis Briedis, Miguel Carvalho, Fernando Ferreira
{"title":"Development of flexible textile aluminium-air battery prototype","authors":"Aleksandrs Vališevskis,&nbsp;Uģis Briedis,&nbsp;Miguel Carvalho,&nbsp;Fernando Ferreira","doi":"10.1007/s40243-021-00191-z","DOIUrl":"https://doi.org/10.1007/s40243-021-00191-z","url":null,"abstract":"<p>There is one component that virtually any embedded wearable needs—a power source. This paper proposes an energy source, which contains no harmful substances, can be stored in a stand-by dry state for indefinite time period, is flexible and has tactile characteristics similar to that of textile. The main feature of this energy source is the separation of the electrolyte and the electrodes—the electrolyte is applied only when the battery needs to be activated. This makes storage time in a dry state virtually infinite. It expands their potential use to storage solutions and healthcare/health monitoring solutions, because the design of the battery allows it to be used as an active sensor, which generates electric current, when it detects liquid. We stress that this solution is suitable for specific applications only, outlined in the paper. The main components of the battery include aluminium anode, air cathode and the cotton shell. The design includes only textile-based materials, which ensure greater flexibility and better fusion with textile materials, where the battery is intended to be integrated. Besides that, results of the experiments with multi-cell battery prototype are presented.\u0000</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"10 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-021-00191-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4117873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Development of palladium catalysts modified by ruthenium and molybdenum as anode in direct ethanol fuel cell 直接乙醇燃料电池负极钌钼改性钯催化剂的研制
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2021-02-02 DOI: 10.1007/s40243-020-00187-1
Yonis Fornazier Filho, Ana Caroliny Carvalho da Cruz, Rolando Pedicini, José Ricardo Cezar Salgado, Priscilla Paiva Luz, Josimar Ribeiro
{"title":"Development of palladium catalysts modified by ruthenium and molybdenum as anode in direct ethanol fuel cell","authors":"Yonis Fornazier Filho,&nbsp;Ana Caroliny Carvalho da Cruz,&nbsp;Rolando Pedicini,&nbsp;José Ricardo Cezar Salgado,&nbsp;Priscilla Paiva Luz,&nbsp;Josimar Ribeiro","doi":"10.1007/s40243-020-00187-1","DOIUrl":"https://doi.org/10.1007/s40243-020-00187-1","url":null,"abstract":"<p>Physical and electrochemical properties of Pd catalysts combined with Ru and Mo on carbon support were investigated. To this end, Pd, Pd<sub>1.3</sub>Ru<sub>1.0</sub>, Pd<sub>3.2</sub>Ru<sub>1.3</sub>Mo<sub>1.0</sub> and Pd<sub>1.5</sub>Ru<sub>0.8</sub>Mo<sub>1.0</sub> were synthesized on Carbon Vulcan XC72 support by the method of thermal decomposition of polymeric precursors and then physically and electrochemically characterized. The highest reaction yields are obtained for Pd<sub>3.2</sub>Ru<sub>1.3</sub>Mo<sub>1.0</sub>/C and Pd<sub>1.5</sub>Ru<sub>0.8</sub>Mo<sub>1.0</sub>/C and, as demonstrated by thermal analysis, they also show the smallest metal/carbon ratio compared the other catalysts. XRD (X-ray Diffraction) and Raman analyses show the presence of PdO and RuO<sub>2</sub> for the Pd/C and the Pd<sub>1.3</sub>Ru<sub>1.0</sub>/C catalysts, respectively, a fact not observed for the Pd<sub>3.2</sub>Ru<sub>1.3</sub> Mo<sub>1.0</sub> /C and the Pd<sub>1.5</sub>Ru<sub>0.8</sub>Mo<sub>1.0</sub>/C catalysts. The catalytic activities were tested for the ethanol oxidation in alkaline medium. Cyclic voltammetry (CV) shows Pd<sub>1.3</sub>Ru<sub>1.0</sub>/C exhibiting the highest peak of current density, followed by Pd<sub>3.2</sub>Ru<sub>1.3</sub>Mo<sub>1.0</sub>/C, Pd<sub>1.5</sub>Ru<sub>0.8</sub>Mo<sub>1.0</sub>/C and Pd/C. From, chronoamperometry (CA), it is possible to observe the lowest rate of poisoning for the Pd<sub>1.3</sub>Ru<sub>1.0</sub>/C, followed by Pd<sub>3.2</sub>Ru<sub>1.3</sub>Mo<sub>1.0</sub>/C, Pd<sub>1.5</sub>Ru<sub>0.8</sub>Mo<sub>1.0</sub>/C and Pd/C. These results suggested that catalytic activity of the binary and the ternary catalysts are improved in comparison with Pd/C. The presence of RuO<sub>2</sub> activated the bifunctional mechanism and improved the catalytic activity in the Pd<sub>1.3</sub>Ru<sub>1.0</sub>/C catalyst. The addition of Mo in the catalysts enhanced the catalytic activity by the intrinsic mechanism, suggesting a synergistic effect between metals. In summary, we suggest that it is possible to synthesize ternary PdRuMo catalysts supported on Carbon Vulcan XC72, resulting in materials with lower poisoning rates and lower costs than Pd/C.</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"10 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-020-00187-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4076381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Investigation on the thermal degradation, moisture absorption characteristics and antibacterial behavior of natural insulation materials 天然保温材料的热降解、吸湿特性及抗菌性能研究
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2021-02-01 DOI: 10.1007/s40243-021-00188-8
Ayaz Ahmed, Adnan Qayoum
{"title":"Investigation on the thermal degradation, moisture absorption characteristics and antibacterial behavior of natural insulation materials","authors":"Ayaz Ahmed,&nbsp;Adnan Qayoum","doi":"10.1007/s40243-021-00188-8","DOIUrl":"https://doi.org/10.1007/s40243-021-00188-8","url":null,"abstract":"<p>The demand for natural insulation materials is increasing with special attention to the use of such materials for exploiting renewable energy. Natural insulation materials tremendously influence the sustainability development and energy efficiency enhancement in the buildings. Natural fibers from animal’s origin absorb great amount of moisture on exposed to the environment which significantly affects the performance and thermal insulation properties. The thermal degradation of such material strongly influences the accidental burning characteristics, an important selection criteria for building materials. In the present study, three different kind of natural insulation materials namely sheep wool, goat wool and horse mane have been characterized in terms of moisture absorption, thermal degradation and morphology using thermogravimetric analysis (TGA), differential scanning calorimetry techniques, and scanning electron microscopy, respectively. In addition, antibacterial behavioral study has been also carried out for untreated raw wool and treated wool (copper nitrate). These properties are vital for a holistic evaluation of the insulation material. Moisture absorption results indicate that the sheep wool and goat wool absorb less moisture content as compared to horse mane. Unlike this horse mane shows great stability than goat wool and sheep wool in the temperature range not exceeding 470?°C. TGA data indicate 50% mass loss (<i>T</i><sub>50%</sub>) at 306?°C, 322?°C and 318?°C for sheep wool, goat wool and horse mane, respectively. In addition the tests show that the content of fire retardant elements like nitrogen and sulphur is more in horse mane as compared to sheep wool and goat wool. The treated wool samples showed excellent antibacterial properties as compared to untreated wool samples.</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"10 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-021-00188-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4022447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
CuO/CuxS composites fabrication and their thermoelectric properties CuO/CuxS复合材料的制备及其热电性能
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2021-01-30 DOI: 10.1007/s40243-021-00189-7
Rafiq Mulla, M. K. Rabinal
{"title":"CuO/CuxS composites fabrication and their thermoelectric properties","authors":"Rafiq Mulla,&nbsp;M. K. Rabinal","doi":"10.1007/s40243-021-00189-7","DOIUrl":"https://doi.org/10.1007/s40243-021-00189-7","url":null,"abstract":"<p>Herein, copper oxide/copper sulfide (CuO/Cu<sub>x</sub>S) composites have been prepared by treating CuO with thiourea by an aqueous hydrothermal route and their thermoelectric properties are studied. The electrical conductivity is improved with the increase in thiourea content, as a result, thermoelectric power factor increased from 10<sup>–4</sup> to 10<sup>1</sup>?μW?m<sup>?1</sup>?K<sup>?2</sup>, and thermal conductivity of the CuO is also found to decrease with thiourea treatment. A detailed analysis indicated that these changes are due to the formation of copper sulfide (Cu<sub>x</sub>S) in the CuO compound; a small fraction of electrically good conducting Cu<sub>x</sub>S in the bulk CuO has produced composites with better electrical conductivity. These low-cost and non-toxic materials can be useful in thermoelectric energy conversion applications.</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"10 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-021-00189-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5152408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
New naphthalenediimides as potential dyes for TiO2-sensitized solar cells 新型萘二亚胺作为tio2敏化太阳能电池的潜在染料
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2021-01-28 DOI: 10.1007/s40243-021-00190-0
Christian L. Castro-Riquelme, Adrián Ochoa-Terán, J. C. Calva-Yáñez, E. A. Reynoso-Soto, R. M. Félix-Navarro
{"title":"New naphthalenediimides as potential dyes for TiO2-sensitized solar cells","authors":"Christian L. Castro-Riquelme,&nbsp;Adrián Ochoa-Terán,&nbsp;J. C. Calva-Yáñez,&nbsp;E. A. Reynoso-Soto,&nbsp;R. M. Félix-Navarro","doi":"10.1007/s40243-021-00190-0","DOIUrl":"https://doi.org/10.1007/s40243-021-00190-0","url":null,"abstract":"<p>In this work new naphthalenediimides (NDIs) were synthesized and used as dyes in DSSC. The efficiency (<i>η</i>) of the DSSC is influenced by NDIs electronic and structural characteristics. It was found a better cell performance with the NDIs which have a broader absorption band shifted to the red color, high ? values, and more adsorption in the anode surface. The band gaps were determinate by UV–vis and cyclic voltammetry. The LUMO orbitals of most of the NDIs are above of the conduction band (CB) energy for TiO<sub>2</sub> allowing the electron transfer process from the NDI to the photoanode, especially in those with a significant LUMO<sup>NDI</sup>-CB<sup>Ti</sup> energetic difference. Also, NDIs with polar groups in their structure presented higher <i>η</i> values due to a better adsorption on the photoanode surface, which allows a better energy capture compared with those with lower adsorption.</p>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"10 1","pages":""},"PeriodicalIF":4.5,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40243-021-00190-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5084890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信