Sajid Sajid, Salem Alzahmi, Imen Ben Salem, Nouar Tabet, Yousef Haik, Ihab M. Obaidat
{"title":"Desirable candidates for high-performance lead-free organic–inorganic halide perovskite solar cells","authors":"Sajid Sajid, Salem Alzahmi, Imen Ben Salem, Nouar Tabet, Yousef Haik, Ihab M. Obaidat","doi":"10.1007/s40243-024-00255-w","DOIUrl":"10.1007/s40243-024-00255-w","url":null,"abstract":"<div><p>Perovskite solar cells (PSCs) are currently demonstrating tremendous potential in terms of straightforward processing, a plentiful supply of materials, and easy architectural integration, as well as high power conversion efficiency (PCE). However, the elemental composition of the widely utilized organic–inorganic halide perovskites (OIHPs) contains the hazardous lead (Pb). The presence of Pb in the PSCs is problematic because of its toxicity which may slow down or even impede the pace of commercialization. As a backup option, the scientific community has been looking for non-toxic/less-toxic elements that can replace Pb in OIHPs. Despite not yet matching the impressive results of Pb-containing OIHPs, the community is paying close attention to Pb-free materials and has seen some encouraging findings. This review evaluates the Pb-replacement with suitable elements and scrutinizes the desirable optoelectronic features of such elements in OIHPs. The fundamental features of Pb-free OIHPs together with their photovoltaic performance in the PSCs are evaluated in details. Finally, we sum up the current challenges and potential opportunities for the Pb-free OIHPs and their devices.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 1","pages":"133 - 153"},"PeriodicalIF":3.6,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00255-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139750644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ibrahim Ali Al-Najati, Abbas F. Jasim, Keng Wai Chan, Swee-Yong Pung
{"title":"The future of tire energy: a novel one-end cap structure for sustainable energy harvesting","authors":"Ibrahim Ali Al-Najati, Abbas F. Jasim, Keng Wai Chan, Swee-Yong Pung","doi":"10.1007/s40243-023-00254-3","DOIUrl":"10.1007/s40243-023-00254-3","url":null,"abstract":"<div><p>Piezoelectric energy harvesting is gaining popularity as an eco-friendly solution to harvest energy from tire deformation for tire condition monitoring systems in vehicles. Traditional piezoelectric harvesters, such as cymbal and bridge structures, cannot be used inside tires due to their design limitations. The wider adoption of renewable energy sources into the energy system is increasing rapidly, reflecting a global attraction toward the utilization of sustainable power sources (Aljendy et al. in Int J Power Energy Convers 12(4): 314–337, 2021; Yesner et al. in Evaluation of a novel piezoelectric bridge transducer. In: 2017 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF)/International Workshop on Acoustic Transduction Materials and Devices (IWATMD)/Piezoresponse Force Microscopy (PFM). IEEE, 2017). The growing interest in capturing energy from tire deformation for Tire Pressure Monitoring Systems (TPMS) aligns with this trend, providing a promising and self-sustaining alternative to traditional battery-powered systems. This study presents a novel one-end cap tire strain piezoelectric energy harvester (TSPEH) that can be used efficiently and reliably inside a tire. The interaction between the tire and energy harvester was analyzed using a decoupled modeling approach, which showed that stress concentration occurred along the edge of the end cap. The TSPEH generated a maximum voltage of 768 V under 2 MPa of load, resulting in an energy output of 32.645 J/rev under 1 MPa. The computational findings of this study were consistent with previous experimental investigations, confirming the reliability of the numerical simulations. The results suggest that the one-end cap structure can be an effective energy harvester inside vehicle tires, providing a valuable solution for utilizing one-end cap structures in high-deformation environments such as vehicle tires.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 2","pages":"181 - 208"},"PeriodicalIF":3.6,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00254-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139750706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pedro Henrique da Rosa Braun, Anne Kuchenbuch, Bruno Toselli, Kurosch Rezwan, Falk Harnisch, Michaela Wilhelm
{"title":"Influence of the 3D architecture and surface roughness of SiOC anodes on bioelectrochemical system performance: a comparative study of freeze-cast, 3D-printed, and tape-cast materials with uniform composition","authors":"Pedro Henrique da Rosa Braun, Anne Kuchenbuch, Bruno Toselli, Kurosch Rezwan, Falk Harnisch, Michaela Wilhelm","doi":"10.1007/s40243-023-00253-4","DOIUrl":"10.1007/s40243-023-00253-4","url":null,"abstract":"<div><p>3D-printed anodes for bioelectrochemical systems are increasingly being reported. However, comparisons between 3D-printed anodes and their non-3D-printed counterparts with the same material composition are still lacking. In addition, surface roughness parameters that could be correlated with bioelectrochemical performance are rarely determined. To fill these gaps, slurries with identical composition but different mass fractions were processed into SiOC anodes by tape-casting, freeze-casting, or direct-ink writing. The current generation was investigated using electroactive biofilms enriched with <i>Geobacter</i> spp. Freeze-cast anodes showed more surface pores and the highest surface kurtosis of 5.7 ± 0.5, whereas tape-cast and 3D-printed anodes showed a closed surface porosity. 3D-printing was only possible using slurries 85 wt% of mass fraction. The surface pores of the freeze-cast anodes improved bacterial adhesion and resulted in a high initial (first cycle) maximum current density per geometric surface area of 9.2 ± 2.1 A m<sup>−2</sup>. The larger surface area of the 3D-printed anodes prevented pore clogging and produced the highest current density per geometric surface area of 12.0 ± 1.2 A m<sup>−2</sup>. The current density values of all anodes are similar when the current density is normalized over the entire geometric surface as determined by CT-scans. This study highlights the role of geometric surface area in normalizing current generation and the need to use more surface roughness parameters to correlate anode properties, bacterial adhesion, and current generation.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 1","pages":"81 - 96"},"PeriodicalIF":3.6,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00253-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139764965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adamu Ahmed Goje, Norasikin Ahmad Ludin, Puteri Nor Aznie Fahsyar, Ubaidah Syafiq, Puvaneswaran Chelvanathan, Abu Dzar Al-Ghiffari Syakirin, Mohd Asri Teridi, Mohd Adib Ibrahim, Mohd Sukor Su’ait, Suhaila Sepeai, Ahmad Shah Hizam Md Yasir
{"title":"Review of flexible perovskite solar cells for indoor and outdoor applications","authors":"Adamu Ahmed Goje, Norasikin Ahmad Ludin, Puteri Nor Aznie Fahsyar, Ubaidah Syafiq, Puvaneswaran Chelvanathan, Abu Dzar Al-Ghiffari Syakirin, Mohd Asri Teridi, Mohd Adib Ibrahim, Mohd Sukor Su’ait, Suhaila Sepeai, Ahmad Shah Hizam Md Yasir","doi":"10.1007/s40243-024-00257-8","DOIUrl":"10.1007/s40243-024-00257-8","url":null,"abstract":"<div><p>Perovskite solar cells (PSCs) have shown a significant increase in power conversion efficiency (PCE) under laboratory circumstances from 2006 to the present, rising from 3.8% to an astonishing 25%. This scientific breakthrough corresponds to the changing energy situation and rising industrial potential. The flexible perovskite solar cell (FPSC), which capitalizes on the benefits of perovskite thin-film deposition and operates at low temperatures, is key to this transition. The FPSC is strategically important for large-scale deployment and mass manufacturing, especially when combined with the benefits of perovskite thin-film deposition under moderate thermodynamic conditions. Its versatility is demonstrated by the ease with which it may be folded, rolled, or coiled over flexible substrates, allowing for efficient transportation. Notably, FPSCs outperform traditional solar panels in terms of adaptability. FPSCs have several advantages over rigid substrates, including mobility, lightweight properties that help transportation, scalability via roll-to-roll (R2R) deposition, and incorporation into textiles and architecture. This in-depth examination dives into their fundamental design and various fabrication techniques, which include conducting substrates, absorber layers, coordinated charge movement, and conductive electrodes. This review evaluates critical FPSC fabrication techniques such as thermal evaporation, R2R approaches, slot die and spray deposition, blade coating, and spin coating. The present challenges in constructing FPSCs with high performance and long-term stability are also highlighted. Finally, the solar industry's potential uses for both indoor and outdoor FPSCs have been discussed.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 1","pages":"155 - 179"},"PeriodicalIF":3.6,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-024-00257-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139645569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexandra Grekova, Svetlana Strelova, Marina Solovyeva, Mikhail Tokarev
{"title":"The thermophysical properties of a promising composite adsorbent based on multi-wall carbon nanotubes for heat storage","authors":"Alexandra Grekova, Svetlana Strelova, Marina Solovyeva, Mikhail Tokarev","doi":"10.1007/s40243-023-00243-6","DOIUrl":"10.1007/s40243-023-00243-6","url":null,"abstract":"<div><p>The use of energy from alternative energy sources as well as the use of waste heat are key elements of an efficient energetics. Adsorption heat storage is a technology that allows solving such problems. For the successful operation of an adsorption heat accumulator, it is necessary to analyze the thermophysical characteristics of the system under the conditions of the operating cycle: heat transfer coefficient adsorbent-metal (α<sub>2</sub>)<sub>,</sub> overall (U) and global (UA) heat transfer coefficients of heat exchanger. Multi-walled carbon nanotube (MWCNT) composites are very promising for adsorption-based renewable energy storage and conversion technologies. In this work at the stage of heat release, α<sub>2</sub> was measured by the large pressure jump (LPJ) method, at the stage of heat storage by large temperature jump method (LTJ), which made it possible to obtain thermophysical characteristics that corresponded to the implementation of the real working cycle as much as possible. The heat transfer coefficients for a pair of adsorbent LiCl/MWCNT—methanol are measured for the first time under the conditions of a daily heat storage cycle both at the sorption stage (α<sub>2</sub> = 190 W/m<sup>2</sup>K) and at the desorption stage (α<sub>2</sub> = 170 W/m<sup>2</sup>K).</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 1","pages":"1 - 12"},"PeriodicalIF":3.6,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00243-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139553696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Production and characterization of briquettes from sugarcane bagasse of Wonji Sugar Factory, Oromia, Ethiopia","authors":"Asmelash Gebrekidan Mekonen, Goitom Gebreyohannes Berhe, Mulu Berhe Desta, Fentahun Abebaw Belete, Amare Fisseha Gebremariam","doi":"10.1007/s40243-023-00248-1","DOIUrl":"10.1007/s40243-023-00248-1","url":null,"abstract":"<div><p>Briquetted biomass, like sugarcane bagasse, a by-product of sugar mills, is a renewable energy source. This study aimed at the production and characterization of bagasse briquettes. The production of briquettes was carried out with different blending ratios (5, 10, and 15%) and average particle sizes (0.75, 2.775, and 4.8 mm) with various binders of cow dung, waste paper, and admixture (molasses and wastepaper). The bagasse underwent drying, size reduction, sieving, binder addition, and densification using a manual press during the briquetting process. Characterization of the physical and combustion parameters of briquettes, such as density, shatter resistance, proximate, and calorific value, followed the American Society for Testing and Materials procedures. The result shows that the maximum density of briquettes was 0.804 g/cm<sup>3</sup>, while shatter resistance varied from 83.051 to 94.975% (4.8mm, 5% cow dung and 0.75mm, 5% admixture binders respectively). ANOVA analysis showed that the factors and their interactions had a significant influence (<i>p</i> value < 0.05) on the physical properties. The optimum parameters of briquettes achieved were 14.953% admixture binder, 0.776 mm particle size, 0.805 g/cm<sup>3</sup> density, and 95.811% shatter resistance. Bagasse briquettes with a 5% cow dung binder achieved a high calorific value of 39927.05 kcal/kg. The ultimate analysis revealed a composition of 47.49% carbon (C), 5.133% hydrogen (H), 1.557% nitrogen (N), 0.374% sulfur (S), and 45.446% oxygen (O). Therefore, bagasse has a high calorific value and can be used for briquetting to replace fossil fuel and firewood in different applications. In addition, due to its availability, utilizing as fuel source has economic advantage.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 1","pages":"27 - 43"},"PeriodicalIF":3.6,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00248-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139553712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Premkumar, M. Radha Madhavi, K. Kitmo, S. Shanmugan
{"title":"Utilizing the lignocellulosic fibers from Pineapple Crown Leaves extract for enhancing TiO2 interfacial bonding in dye-sensitized solar cell photoanodes","authors":"N. Premkumar, M. Radha Madhavi, K. Kitmo, S. Shanmugan","doi":"10.1007/s40243-023-00245-4","DOIUrl":"10.1007/s40243-023-00245-4","url":null,"abstract":"<div><p>The crown leaves of pineapple possess a wealth of smooth and glossy silk medium-length fibers, primarily composed of cellulose and lignin, accompanied by constituents such as fats, waxes, pectin, uronic acid, anhydride, pentosan, color pigments, and inorganic substances. These fibers exhibit an anisotropic nature and are characterized by hydrogen bonding interactions, rendering them effective in conjunction with semiconductor oxide (TiO<sub>2</sub>) through their cellulosic fibrils. The dye extracted from Pineapple Crown Leaves (PCL) using ethanol was subjected to FTIR and UV–visible spectroscopy. The FTIR analysis revealed absorption peaks at 3268 cm<sup>−1</sup> and 2922 cm<sup>−1</sup>, confirming the presence of –OH and –CH stretching attributed to the fibrils within the dye. UV–visible spectroscopy further demonstrated absorption within the visible region of the electromagnetic spectrum. Additionally, a photoluminescence study of the dye showcased emission within the visible range of the electromagnetic spectrum. Subsequently, a solar cell incorporating this dye underwent JV characterization, yielding an efficiency of 1.0034%, along with fill factor, open-circuit voltage, and short-circuit current density values of 0.40644, 0.7058 V, and 3.4906 mA/cm<sup>2</sup>, respectively. To gain deeper insights and facilitate optimization for large-scale installations, a simulation model utilizing PC1D was proposed to explore the influential parameters of the Dye-sensitized solar cell (DSSC).</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 1","pages":"13 - 25"},"PeriodicalIF":3.6,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00245-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139553694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Platinum nanoparticles decorated multiwalled carbon nanotube composites as highly transparent, bifacial counter electrodes for dye-sensitized solar cells","authors":"R. Krishnapriya, C. Nizamudeen, A.-H. I. Mourad","doi":"10.1007/s40243-023-00247-2","DOIUrl":"10.1007/s40243-023-00247-2","url":null,"abstract":"<div><p>Dye-sensitized solar cells (DSSCs) are low-cost solar energy conversion devices with variable color and transparency advantages. DSSCs' potential power efficiency output, even in diffuse light conditions with consistent performance, allows them to be used in building-integrated photovoltaics (BIPV) window applications. Significantly, the development of bifacial DSSCs is getting significant scientific consideration. Triiodide/iodide (I<sub>3</sub><sup>–</sup>/I<sup>–</sup>) redox couple-mediated DSSCs require highly effective and stable electrocatalysts for I<sub>3</sub><sup>−</sup> reduction to overcome their performance constraints. However, the commonly employed platinum (Pt) cathodes have restrictions on high price and unfavorable durability. Here, we report platinum nanoparticles (Pt NPs) incorporated into multiwalled carbon nanotubes (MWCNT) composites with lower Pt content as an efficient bifacial counter electrode (CE) material for DSSC applications. Pt NPs were homogenously decorated over the MWCNT surfaces using a simple polyol method at relatively low temperatures. CEs fabricated using Pt/MWCNT composites exhibited excellent transparency and power conversion efficiencies (PCE) of 6.92% and 6.09% for front and rear illumination. The results are expected to bring significant advances in bifacial DSSCs for real-world window applications.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 3","pages":"257 - 265"},"PeriodicalIF":3.6,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00247-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138512836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abass Akande Faremi, Olusayo Olubosede, Ayodeji Olalekan Salau, Samuel Olakunle Adigbo, Peter Apata Olubambi, Ezekiel Lawan
{"title":"Variability of temperature on the electrical properties of heterostructured CIS/Cds through SCAPS simulation for photovoltaic applications","authors":"Abass Akande Faremi, Olusayo Olubosede, Ayodeji Olalekan Salau, Samuel Olakunle Adigbo, Peter Apata Olubambi, Ezekiel Lawan","doi":"10.1007/s40243-023-00244-5","DOIUrl":"10.1007/s40243-023-00244-5","url":null,"abstract":"<div><p>Renewable energy research has received tremendous attention in recent years in a quest to circumvent the current global energy crisis. This study carefully selected and simulated the copper indium sulfur ternary compound semiconductor material with cadmium sulfide owing to their advantage in photovoltaic applications. Despite the potential of the materials in photovoltaic devices, the causes of degradation in the photovoltaic efficiency using such compound semiconductor materials have not really been investigated. However, electrical parameters of the materials such as open circuit voltage, short circuit current density, and fill factor have been extensively studied and reported as major causes of degradation in materials’ efficiency. Furthermore, identifying such electrical characteristics as a primary degradation mechanism in solar cells, this study work is an ardent effort that investigates the materials' electrical behavior as a cure to the degradation associated with compound semiconductor-based photovoltaic. In this study, we numerically characterized the electrical properties such as fill factor, open circuit voltage, short circuit current density, power conversion efficiency, net recombination rate, net generation rate, generation current density, recombination current density, hole current density, electrons current density, energy band diagram, capacitance–voltage, electric field strength of the heterostructured CIS/CdS compound semiconductor material using SCAP-1D. We also investigated the effect of temperature on the electrical properties of heterostructured materials. The obtained results reveal the uniformity of the total current density in the material despite the exponential decrease in the electron current density and the exponential increase in hole current density. The extracted solar cell parameters of the heterostructured CIS/CdS at 300 K are 18.6% for PCE, 64.8% for FF, 0.898 V for <i>V</i><sub>oc</sub>, and 32 mA cm<sup>−2</sup> for <i>J</i><sub>sc</sub>. After the investigation of the effect of temperature on the CIS/CdS compound semiconductor material, it was observed that the solar cell was most efficient at 300 K. The energy band gap of the CIS/CdS compound semiconductor material shrinks with an increase in temperature. The highest net recombination rate and recombination current is at 400 K, while the net generation rate and generation current density are independent of temperature. The study, on the other hand, gave insights into the potential degradation process, and utilizing the study’s findings could provide photovoltaic degradation remediation.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 3","pages":"235 - 246"},"PeriodicalIF":3.6,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00244-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138512841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biodiesel production from transesterified yellow grease by ZSM-5 zeolite-supported BaO catalyst: process optimization by Taguchi’s experimental design approach","authors":"Adeyinka Sikiru Yusuff, Moses Oluwafemi Onibonoje","doi":"10.1007/s40243-023-00240-9","DOIUrl":"10.1007/s40243-023-00240-9","url":null,"abstract":"<div><p>Methanolysis of yellow grease (YG) was performed to synthesize its corresponding methyl ester (YGME) using BaO loaded on ZSM-5 (BaO/ZSM-5) as a heterogeneous base catalyst that was prepared via metallic solution hydrolysis method and characterized using N<sub>2</sub> adsorption–desorption (BET), surface basicity, XRD, TGA/DTA, SEM, FTIR and Raman techniques.### The Taguchi design approach was utilized to optimize the transesterification process factors, and among the parameters studied, calcination temperature was found to have a significant influence on YGME yield. At 70 ℃ for 3 h, a YGME yield of 95.9 <span>(pm 0.94)</span>% was obtained using a methanol/YG molar ratio of 15:1 and 1 g (2 wt.% of YG used) of BaO/ZSM-5 sample calcined at 700 ℃. The BaO/ZSM-5 catalyst was reused six times with only a 15% decrease in activity.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 3","pages":"199 - 208"},"PeriodicalIF":3.6,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00240-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138512837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}