Influence of the 3D architecture and surface roughness of SiOC anodes on bioelectrochemical system performance: a comparative study of freeze-cast, 3D-printed, and tape-cast materials with uniform composition
Pedro Henrique da Rosa Braun, Anne Kuchenbuch, Bruno Toselli, Kurosch Rezwan, Falk Harnisch, Michaela Wilhelm
{"title":"Influence of the 3D architecture and surface roughness of SiOC anodes on bioelectrochemical system performance: a comparative study of freeze-cast, 3D-printed, and tape-cast materials with uniform composition","authors":"Pedro Henrique da Rosa Braun, Anne Kuchenbuch, Bruno Toselli, Kurosch Rezwan, Falk Harnisch, Michaela Wilhelm","doi":"10.1007/s40243-023-00253-4","DOIUrl":null,"url":null,"abstract":"<div><p>3D-printed anodes for bioelectrochemical systems are increasingly being reported. However, comparisons between 3D-printed anodes and their non-3D-printed counterparts with the same material composition are still lacking. In addition, surface roughness parameters that could be correlated with bioelectrochemical performance are rarely determined. To fill these gaps, slurries with identical composition but different mass fractions were processed into SiOC anodes by tape-casting, freeze-casting, or direct-ink writing. The current generation was investigated using electroactive biofilms enriched with <i>Geobacter</i> spp. Freeze-cast anodes showed more surface pores and the highest surface kurtosis of 5.7 ± 0.5, whereas tape-cast and 3D-printed anodes showed a closed surface porosity. 3D-printing was only possible using slurries 85 wt% of mass fraction. The surface pores of the freeze-cast anodes improved bacterial adhesion and resulted in a high initial (first cycle) maximum current density per geometric surface area of 9.2 ± 2.1 A m<sup>−2</sup>. The larger surface area of the 3D-printed anodes prevented pore clogging and produced the highest current density per geometric surface area of 12.0 ± 1.2 A m<sup>−2</sup>. The current density values of all anodes are similar when the current density is normalized over the entire geometric surface as determined by CT-scans. This study highlights the role of geometric surface area in normalizing current generation and the need to use more surface roughness parameters to correlate anode properties, bacterial adhesion, and current generation.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"13 1","pages":"81 - 96"},"PeriodicalIF":3.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00253-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-023-00253-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
3D-printed anodes for bioelectrochemical systems are increasingly being reported. However, comparisons between 3D-printed anodes and their non-3D-printed counterparts with the same material composition are still lacking. In addition, surface roughness parameters that could be correlated with bioelectrochemical performance are rarely determined. To fill these gaps, slurries with identical composition but different mass fractions were processed into SiOC anodes by tape-casting, freeze-casting, or direct-ink writing. The current generation was investigated using electroactive biofilms enriched with Geobacter spp. Freeze-cast anodes showed more surface pores and the highest surface kurtosis of 5.7 ± 0.5, whereas tape-cast and 3D-printed anodes showed a closed surface porosity. 3D-printing was only possible using slurries 85 wt% of mass fraction. The surface pores of the freeze-cast anodes improved bacterial adhesion and resulted in a high initial (first cycle) maximum current density per geometric surface area of 9.2 ± 2.1 A m−2. The larger surface area of the 3D-printed anodes prevented pore clogging and produced the highest current density per geometric surface area of 12.0 ± 1.2 A m−2. The current density values of all anodes are similar when the current density is normalized over the entire geometric surface as determined by CT-scans. This study highlights the role of geometric surface area in normalizing current generation and the need to use more surface roughness parameters to correlate anode properties, bacterial adhesion, and current generation.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies