Materials for Renewable and Sustainable Energy最新文献

筛选
英文 中文
A review on recent research on bio-based building materials and their applications 生物基建筑材料及其应用研究进展
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2023-05-10 DOI: 10.1007/s40243-023-00234-7
S. Bourbia, H. Kazeoui, R. Belarbi
{"title":"A review on recent research on bio-based building materials and their applications","authors":"S. Bourbia,&nbsp;H. Kazeoui,&nbsp;R. Belarbi","doi":"10.1007/s40243-023-00234-7","DOIUrl":"10.1007/s40243-023-00234-7","url":null,"abstract":"<div><p>Bio-based materials represent a promising alternative in building envelope applications, with the aim of improving in-use energy efficiency. They have the advantage of being renewable, low embodied energy and CO<sub>2</sub> neutral or negative. In addition, they are excellent thermal regulators. This paper presents an overview of the state-of-the-art of bio-based materials used in building construction and their applications. The materials outlined include hemp, wood, date palm wood, cork, alfa and straw. Through this literature study we want to get a broad overview of the current state of theoretical and experimental studies of their hygrothermal characteristics and their thermal and energy performances. The aim is not to be exhaustive but to summarise the most important research results on these materials. This is the first part of a research work that deals with the contribution to the development of a new bio-based construction material to be used in building.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 2","pages":"117 - 139"},"PeriodicalIF":4.5,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00234-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41083527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Alkaline electrolysis using CuOx cathode for the conversion of carbon dioxide into liquid fuels 使用CuOx阴极进行碱性电解,将二氧化碳转化为液体燃料
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2023-05-10 DOI: 10.1007/s40243-023-00235-6
S. C. Zignani, M. Lo Faro, A. Carbone, A. Pallela, L. Spadaro, A. S. Aricò
{"title":"Alkaline electrolysis using CuOx cathode for the conversion of carbon dioxide into liquid fuels","authors":"S. C. Zignani,&nbsp;M. Lo Faro,&nbsp;A. Carbone,&nbsp;A. Pallela,&nbsp;L. Spadaro,&nbsp;A. S. Aricò","doi":"10.1007/s40243-023-00235-6","DOIUrl":"10.1007/s40243-023-00235-6","url":null,"abstract":"<div><p>Electrochemical reduction of CO<sub>2</sub> is an effective method for storing intermittent renewable energy. This could result in fuel additives and chemical feedstocks such as alcohols. A challenge of electrochemical alcohol production is the transfer of electrons and protons, as well as the formation of C–C bonds. As of now, copper-based materials are the most commonly used and effective catalysts. Although CuO<sub><i>x</i></sub> is considered a promising catalyst for electrochemical CO<sub>2</sub> reduction reactions (CO2RR), significant improvements in product selectivity are still needed. This paper presents some results obtained using copper oxide as a cathode, combined with 33% of ionomer, nickel iron as anode, and membrane Fumatech as electrolyte. As a result of physico-chemical experiments, morphological measurements of the cathode, electrochemical experiments carried out with a complete zero-gap cell operating under alkaline conditions, and gas-chromatographic (GC) analyses of the cathode outlet stream, we determined that methyl formate, ethanol, and propanol were mainly obtained at a rate of 116.3 μmol <span>({text{g}}_{text{cat}}^{-1} , {text{h}}^{-{1}})</span> during operation at 2.2 V.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 2","pages":"141 - 146"},"PeriodicalIF":4.5,"publicationDate":"2023-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00235-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41083528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N-type H2-doped amorphous silicon layer for solar-cell application 用于太阳能电池的N型H2掺杂非晶硅层
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2023-04-12 DOI: 10.1007/s40243-023-00232-9
Soni Prayogi, A. Ayunis, Yoyok Cahyono, D. Darminto
{"title":"N-type H2-doped amorphous silicon layer for solar-cell application","authors":"Soni Prayogi,&nbsp;A. Ayunis,&nbsp;Yoyok Cahyono,&nbsp;D. Darminto","doi":"10.1007/s40243-023-00232-9","DOIUrl":"10.1007/s40243-023-00232-9","url":null,"abstract":"<div><p>In this work, we report that hydrogen (H<sub>2</sub>) doped in n-type a-Si:H thin films strongly influences the electronic correlation in increasing the conversion output power of solar cells. Type n a-Si:H thin films were grown using PECVD on ITO substrates with various H2-doping, to obtain various thin films for solar-cell applications. N-type a-Si:H thin films were prepared, and then characterized using ellipsometric spectroscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. The addition of doped-H<sub>2</sub> to the thin layer shows a decrease in optical conductivity, while the energy gap in the thin layer shows a significant increase in the a-Si:H-type thin layer. Our results show that H<sub>2</sub> doping plays a very important role in the electronic structure, which is indicated by the significant energy gap difference. On the other hand, the bond structure of each H2-doped thin film showed a change from amorphous to nanocrystalline structures which were evenly distributed in each H<sub>2</sub>-doped bonding. Overall, we believe that the addition of doped-H<sub>2</sub> to our findings could help increase the power conversion output of the solar cell due to the modification of the electronic structure.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 2","pages":"95 - 104"},"PeriodicalIF":4.5,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00232-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41083689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Modeling and simulation of biomass anaerobic digestion for high biogas yield and CO2 mineralization 生物质厌氧消化高沼气产量和CO2矿化的建模与模拟
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2023-04-07 DOI: 10.1007/s40243-023-00233-8
Salim Mokraoui, Ahmed Halilu, Mohd Ali Hashim, Mohamed Kamel Hadj-Kali
{"title":"Modeling and simulation of biomass anaerobic digestion for high biogas yield and CO2 mineralization","authors":"Salim Mokraoui,&nbsp;Ahmed Halilu,&nbsp;Mohd Ali Hashim,&nbsp;Mohamed Kamel Hadj-Kali","doi":"10.1007/s40243-023-00233-8","DOIUrl":"10.1007/s40243-023-00233-8","url":null,"abstract":"<div><p>Bioenergy is one of several renewable energy options derived from biomass that can help satisfy our energy needs.  Anaerobic digestion is a viable method for producing bioenergy in the form of biogas from biomass. The anaerobic digestion process is challenged with low biogas recovery, and low-quality effluent or CO<sub>2</sub> emission, which contribute to environmental pollution and the carbon footprint in the atmosphere. Computational process modelling and simulation can provide realistic information for dealing with the technological challenges involved with anaerobic digestion. In this study, modeling and simulation of the simplified anaerobic digestion process were done using SuperPro Designer software fed with biomass feedstock containing carbohydrates, proteins, and fats, as well as yeast, at 37 °C mesophilic temperature. The anaerobic digestion process yielded 89.655% of CH<sub>4</sub> and 10.345% of CO<sub>2</sub> and confirmed that the carbohydrate feedstock produces more CH<sub>4</sub> composition in the biogas. Mineralization of CO<sub>2</sub> using MgO yielded 0.23% MgCO<sub>3</sub>, consuming &gt; 99% of the CO<sub>2</sub> produced during the anaerobic digestion process. Environmental impact assessment of the effluent discharge yielded 0.142 kg Slds/L volatile solid with 6.01% COD reduction per batch of the anaerobic digestion process in an anaerobic digester with 90% (1.925 kg/batch) feedstock dosage. The data indicate that single-batch effluent cannot be discharged into the environment, hence indicating the possible recycling for multiple anaerobic digestion processing. The results are a significant guide for the realistic scalable production of high-quality biogas for bioenergy application, CO<sub>2</sub> mineralization, and environmental remediation.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 2","pages":"105 - 116"},"PeriodicalIF":4.5,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00233-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41083470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of polymer blend electrolytes for battery systems: recent progress, challenges, and future outlook 电池系统用聚合物共混电解质的发展:最新进展、挑战和未来展望
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2023-03-31 DOI: 10.1007/s40243-023-00231-w
Negese Yazie, Delele Worku, Nigus Gabbiye, Addisu Alemayehu, Zerihun Getahun, Mehary Dagnew
{"title":"Development of polymer blend electrolytes for battery systems: recent progress, challenges, and future outlook","authors":"Negese Yazie,&nbsp;Delele Worku,&nbsp;Nigus Gabbiye,&nbsp;Addisu Alemayehu,&nbsp;Zerihun Getahun,&nbsp;Mehary Dagnew","doi":"10.1007/s40243-023-00231-w","DOIUrl":"10.1007/s40243-023-00231-w","url":null,"abstract":"<div><p>Nowadays, addressing the drawbacks of liquid electrolyte-based batteries is a hot and challenging issue, which is supposed to be fulfilled through solid electrolyte systems such as polymer electrolytes. Polymer blend electrolytes (PBEs) are widely investigated as viable options to solve the undesired characteristics of their liquid counterparts and also the poor ionic conductivity of homopolymer-based electrolytes. Even though PBEs outperform homopolymer-based electrolytes in terms of performance, the conductivity of pristine PBEs is quite low for practical applications (i.e. below 10<sup>–3</sup> S/cm at room temperature). A very promising approach to solve this limitation is to incorporate additives into the electrolyte systems, to select suitable polymeric materials and to employ the desired synthesizing techniques as the performance of PBEs is strongly dependent on the selection of polymeric materials (i.e. on the inherent properties of polymers), the nature and amount of salts and other additives, and also the techniques employed to synthesize the polymer blend hosts and/or polymer blend electrolytes, determining the functionality, amorphousness, dielectric constant, dimensional stability, and, ultimately, the electrochemical performances of the system. This paper reviews the different factors affecting the miscibility of polymer blends, PBEs synthesizing techniques, the thermal, chemical, mechanical and electrochemical characteristics of PBEs, and also the challenges and opportunities of PBEs. Moreover, the paper presents the current progress of polymer blend electrolytes as well as future prospects for advancing polymer blend electrolytes in the energy storage sectors.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 2","pages":"73 - 94"},"PeriodicalIF":4.5,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00231-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41083676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Development of thin film coatings with polypyrrole (ppy) by physical plasma deposition technique (PAPVD) for electrochemical capacitor 用物理等离子体沉积技术(PAPVD)制备聚吡咯电化学电容器薄膜涂层
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2023-02-21 DOI: 10.1007/s40243-023-00230-x
F. I. Espinosa-Lagunes, Julieta Torres-González
{"title":"Development of thin film coatings with polypyrrole (ppy) by physical plasma deposition technique (PAPVD) for electrochemical capacitor","authors":"F. I. Espinosa-Lagunes,&nbsp;Julieta Torres-González","doi":"10.1007/s40243-023-00230-x","DOIUrl":"10.1007/s40243-023-00230-x","url":null,"abstract":"<div><p>In this study, new polypyrrole films (ppy) were synthesized using a physical plasma deposition (PAPVD) system; where the equipment design and methodology for plasma-assisted pyrrole polymerization were improvement. The morphology, functional groups, and thermal stability of the polymer network films were characterized by X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) techniques, respectively. The electrochemical properties of the films as capacitor were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The results observed by SEM showed that the ppy 100W-1 and ppy 100W-2 films present uniformity in their structure. The analyses of TGA and DSC confirmed the improvement in stability; meanwhile for 100W-1 film, the presence of ppy bonds was corroborated by XPS. Plasma-activated ppy 100W-1 film exhibited higher capacitance and minor Rct resistance than that obtained for ppy 100W-2 film. The specific capacitances values of ppy 100W-1 and ppy 100w-2 films are 196 and 150 F/g in 1 M KCl. After charging and discharging tests of 1000 cycles at 5 mA cm<sup>−2</sup> current density of ppy 100W-1 film retains 89% of its initial capacitance. Therefore, ppy 100W-1 film showed to be a promising material for use as an electrochemical capacitor.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 1","pages":"63 - 71"},"PeriodicalIF":4.5,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00230-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4817550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First principles study of optical properties of Ni- and Pd-doped TiO2 as visible light catalyst 掺杂Ni和pd的TiO2作为可见光催化剂光学性质的第一性原理研究
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2023-02-16 DOI: 10.1007/s40243-023-00228-5
A. Angeline Dorothy, Puspamitra Panigrahi
{"title":"First principles study of optical properties of Ni- and Pd-doped TiO2 as visible light catalyst","authors":"A. Angeline Dorothy,&nbsp;Puspamitra Panigrahi","doi":"10.1007/s40243-023-00228-5","DOIUrl":"10.1007/s40243-023-00228-5","url":null,"abstract":"<div><p>Doping TiO<sub>2</sub> with noble metals, transition metals, cations, anions have yielded very promising results in enhancing photocatalytic activity of TiO<sub>2</sub> in the visible region and its role in generating alternate forms of energy. Noble metals in general can effectively slow down carrier recombination. However, the study of Pd and Ni as dopant can lead to a reliable and versatile TiO<sub>2</sub>-modified photocatalyst. In this paper, we explore the optical properties of Pd- and Ni-doped TiO<sub>2</sub> by doping with 4.17% Ni and Pd dopant concentrations. The optical properties prove that Ni-doped TiO<sub>2</sub> can absorb well in the visible region with an absorption coefficient of 1 × 10<sup>5</sup> cm<sup>−1</sup>. Hence, Ni-doped TiO<sub>2</sub> can successfully alter the electronic and optical properties of TiO<sub>2</sub> for favorable future applications. In the visible region, absorption coefficient of Pd-doped TiO<sub>2</sub> supercell is around 1.2 × 10<sup>5</sup> cm<sup>−1</sup> which is comparatively greater than that of pure TiO<sub>2</sub> confirming its utility as a versatile and viable visible light photocatalyst. The other optical properties like reflectivity, refractivity, extinction coefficient and electron energy loss spectrum have also been studied.\u0000</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 1","pages":"47 - 52"},"PeriodicalIF":4.5,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00228-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4643414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrodeposited Cobalt–Copper mixed oxides for supercapacitor electrodes and investigation of the Co/Cu ratio on the electrochemical performance 超级电容器电极电沉积钴铜混合氧化物及其Co/Cu比对电化学性能的影响
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2023-02-09 DOI: 10.1007/s40243-023-00229-4
E. Noormohammadi, S. Sanjabi, F. Soavi, F. Poli
{"title":"Electrodeposited Cobalt–Copper mixed oxides for supercapacitor electrodes and investigation of the Co/Cu ratio on the electrochemical performance","authors":"E. Noormohammadi,&nbsp;S. Sanjabi,&nbsp;F. Soavi,&nbsp;F. Poli","doi":"10.1007/s40243-023-00229-4","DOIUrl":"10.1007/s40243-023-00229-4","url":null,"abstract":"<div><p>In this study, different Cobalt–Copper mixed oxides compositions for supercapacitor electrodes have been prepared, by means of electrodeposition and thermal annealing. The chemical–physical and electrochemical characterization of electrodes, as well as the effect of different Co/Cu in the ratios on the crystal lattice, electrode morphologies, and electrochemical performance of the electrodes, were investigated using X-ray diffraction (XRD), scanning electron microscopic (SEM) and cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge (GCD) tests. The results indicated that the electrode prepared from 0.06 M CoSO<sub>4</sub>·7H<sub>2</sub>O + 0.04 M CuSO<sub>4</sub>·5H<sub>2</sub>O solution (CC4) had a better electrochemical performance. The initial capacity of the CC4 electrode was 28.3 mAh/g at a scan rate of 5 mV/s with a coulombic efficiency of 94%. CC4 electrode featured capacity retention of 79.2% at a constant current density of 1 A/g after 5000 cycles.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 1","pages":"53 - 61"},"PeriodicalIF":4.5,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00229-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4376984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Biomass stemmed activated carbon electrodes toward a significant electric double-layer capacitor 生物质将活性炭电极推向重要的电双层电容器
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2023-01-20 DOI: 10.1007/s40243-023-00227-6
Abhimanyu Singh, Gaurav Nath, Pawan Singh Dhapola, Sushant Kumar, Tejas Sharma, Yee Hang Soo, H. K. Jun, Pramod K. Singh, Sunanda Kakroo, Aalia Farid, Marium Khan, Serguei V. Savilov, M. Z. A. Yahya, Bhawana Joshi
{"title":"Biomass stemmed activated carbon electrodes toward a significant electric double-layer capacitor","authors":"Abhimanyu Singh,&nbsp;Gaurav Nath,&nbsp;Pawan Singh Dhapola,&nbsp;Sushant Kumar,&nbsp;Tejas Sharma,&nbsp;Yee Hang Soo,&nbsp;H. K. Jun,&nbsp;Pramod K. Singh,&nbsp;Sunanda Kakroo,&nbsp;Aalia Farid,&nbsp;Marium Khan,&nbsp;Serguei V. Savilov,&nbsp;M. Z. A. Yahya,&nbsp;Bhawana Joshi","doi":"10.1007/s40243-023-00227-6","DOIUrl":"10.1007/s40243-023-00227-6","url":null,"abstract":"<div><p>The primary goal of the current study is to improve the specific capacitance of electric double-layer (EDLC) device using biomass (Tribulus Terrestris) derived activated carbon electrodes synthesized by chemical activation method. Furthermore, high surface area carbon electrodes are characterized using X-ray diffraction (XRD), RAMAN spectroscopy, and scanning electron microscopy (SEM) to confirm the morphological structure. Finally, the electrochemical performance of fabricated EDLC proves a good agreement data using Cyclic Voltammetry (CV), Low Impedance Spectroscopy (LIS), and Galvanostatic Charge–Discharge (GCD) analysis showing the high specific capacitance of 115 Fg<sup>−1</sup> for the optimized 1:2 activated carbon material.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 1","pages":"39 - 45"},"PeriodicalIF":4.5,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00227-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4789627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Comparative analysis between traditional and emerging technologies: economic and viability evaluation in a real case scenario 传统技术与新兴技术的比较分析:真实案例中的经济和可行性评估
IF 4.5
Materials for Renewable and Sustainable Energy Pub Date : 2023-01-16 DOI: 10.1007/s40243-022-00223-2
Catarina Pinho Correia Valério Bernardo, Ricardo A. Marques Lameirinhas, João Paulo Neto Torres, António Baptista
{"title":"Comparative analysis between traditional and emerging technologies: economic and viability evaluation in a real case scenario","authors":"Catarina Pinho Correia Valério Bernardo,&nbsp;Ricardo A. Marques Lameirinhas,&nbsp;João Paulo Neto Torres,&nbsp;António Baptista","doi":"10.1007/s40243-022-00223-2","DOIUrl":"10.1007/s40243-022-00223-2","url":null,"abstract":"<div><p>This research work aims to study photovoltaic systems that generate energy for self-consumption using different traditional technologies, such as silicon, and emerging technologies, like nanowires and quantum. The photovoltaic system without batteries was implemented in a residential property in three different places, in Portugal. According to Portuguese Law, the sale of surplus energy to the grid is possible but the respective value for its selling is not defined. To evaluate the project viability, two different analyses are considered: with and without the sale of surplus energy to the grid. Results show that if there is no sale of excess energy produced to the grid, the project is not economically viable considering the four different technologies. Otherwise, using traditional technologies, the project is economically viable, presenting a payback time lower than 10 years. This shows that the introduction of nanostructures in solar cells is not yet a good solution in the application of solar systems namely with the current law. Furthermore, independently of the used technology, the current Portuguese law seems to difficult the investment return, which should not be the way to encourage the use of renewable sources.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 1","pages":"1 - 22"},"PeriodicalIF":4.5,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-022-00223-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4646764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信