Modeling and simulation of biomass anaerobic digestion for high biogas yield and CO2 mineralization

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Salim Mokraoui, Ahmed Halilu, Mohd Ali Hashim, Mohamed Kamel Hadj-Kali
{"title":"Modeling and simulation of biomass anaerobic digestion for high biogas yield and CO2 mineralization","authors":"Salim Mokraoui,&nbsp;Ahmed Halilu,&nbsp;Mohd Ali Hashim,&nbsp;Mohamed Kamel Hadj-Kali","doi":"10.1007/s40243-023-00233-8","DOIUrl":null,"url":null,"abstract":"<div><p>Bioenergy is one of several renewable energy options derived from biomass that can help satisfy our energy needs.  Anaerobic digestion is a viable method for producing bioenergy in the form of biogas from biomass. The anaerobic digestion process is challenged with low biogas recovery, and low-quality effluent or CO<sub>2</sub> emission, which contribute to environmental pollution and the carbon footprint in the atmosphere. Computational process modelling and simulation can provide realistic information for dealing with the technological challenges involved with anaerobic digestion. In this study, modeling and simulation of the simplified anaerobic digestion process were done using SuperPro Designer software fed with biomass feedstock containing carbohydrates, proteins, and fats, as well as yeast, at 37 °C mesophilic temperature. The anaerobic digestion process yielded 89.655% of CH<sub>4</sub> and 10.345% of CO<sub>2</sub> and confirmed that the carbohydrate feedstock produces more CH<sub>4</sub> composition in the biogas. Mineralization of CO<sub>2</sub> using MgO yielded 0.23% MgCO<sub>3</sub>, consuming &gt; 99% of the CO<sub>2</sub> produced during the anaerobic digestion process. Environmental impact assessment of the effluent discharge yielded 0.142 kg Slds/L volatile solid with 6.01% COD reduction per batch of the anaerobic digestion process in an anaerobic digester with 90% (1.925 kg/batch) feedstock dosage. The data indicate that single-batch effluent cannot be discharged into the environment, hence indicating the possible recycling for multiple anaerobic digestion processing. The results are a significant guide for the realistic scalable production of high-quality biogas for bioenergy application, CO<sub>2</sub> mineralization, and environmental remediation.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 2","pages":"105 - 116"},"PeriodicalIF":3.6000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00233-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-023-00233-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bioenergy is one of several renewable energy options derived from biomass that can help satisfy our energy needs.  Anaerobic digestion is a viable method for producing bioenergy in the form of biogas from biomass. The anaerobic digestion process is challenged with low biogas recovery, and low-quality effluent or CO2 emission, which contribute to environmental pollution and the carbon footprint in the atmosphere. Computational process modelling and simulation can provide realistic information for dealing with the technological challenges involved with anaerobic digestion. In this study, modeling and simulation of the simplified anaerobic digestion process were done using SuperPro Designer software fed with biomass feedstock containing carbohydrates, proteins, and fats, as well as yeast, at 37 °C mesophilic temperature. The anaerobic digestion process yielded 89.655% of CH4 and 10.345% of CO2 and confirmed that the carbohydrate feedstock produces more CH4 composition in the biogas. Mineralization of CO2 using MgO yielded 0.23% MgCO3, consuming > 99% of the CO2 produced during the anaerobic digestion process. Environmental impact assessment of the effluent discharge yielded 0.142 kg Slds/L volatile solid with 6.01% COD reduction per batch of the anaerobic digestion process in an anaerobic digester with 90% (1.925 kg/batch) feedstock dosage. The data indicate that single-batch effluent cannot be discharged into the environment, hence indicating the possible recycling for multiple anaerobic digestion processing. The results are a significant guide for the realistic scalable production of high-quality biogas for bioenergy application, CO2 mineralization, and environmental remediation.

Abstract Image

生物质厌氧消化高沼气产量和CO2矿化的建模与模拟
生物能源是从生物质中提取的几种可再生能源选择之一,有助于满足我们的能源需求。厌氧消化是一种从生物质中以沼气形式生产生物能源的可行方法。厌氧消化过程面临着低沼气回收率和低质量污水或二氧化碳排放的挑战,这些都会造成环境污染和大气中的碳足迹。计算过程建模和模拟可以为应对厌氧消化所涉及的技术挑战提供现实的信息。在这项研究中,使用SuperPro Designer软件对简化的厌氧消化过程进行了建模和模拟,该软件在37°C的中温条件下加入了含有碳水化合物、蛋白质和脂肪的生物质原料以及酵母。厌氧消化过程产生89.655%的CH4和10.345%的CO2,并证实碳水化合物原料在沼气中产生更多的CH4成分。使用MgO的CO2矿化产生0.23%的MgCO3,消耗 >; 99%的CO2在厌氧消化过程中产生。废水排放的环境影响评估产生0.142kg Slds/L挥发性固体,在90%(1.925kg/批)原料剂量的厌氧消化器中,每批厌氧消化过程的COD减少6.01%。数据表明,单批流出物不能排放到环境中,因此表明可能回收用于多次厌氧消化处理。研究结果为生物能源应用、二氧化碳矿化和环境修复的高质量沼气的现实可扩展生产提供了重要指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信