ZSM-5沸石负载的BaO催化剂从酯交换黄色油脂生产生物柴油:Taguchi的实验设计方法优化工艺

IF 3.6 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Adeyinka Sikiru Yusuff, Moses Oluwafemi Onibonoje
{"title":"ZSM-5沸石负载的BaO催化剂从酯交换黄色油脂生产生物柴油:Taguchi的实验设计方法优化工艺","authors":"Adeyinka Sikiru Yusuff,&nbsp;Moses Oluwafemi Onibonoje","doi":"10.1007/s40243-023-00240-9","DOIUrl":null,"url":null,"abstract":"<div><p>Methanolysis of yellow grease (YG) was performed to synthesize its corresponding methyl ester (YGME) using BaO loaded on ZSM-5 (BaO/ZSM-5) as a heterogeneous base catalyst that was prepared via metallic solution hydrolysis method and characterized using N<sub>2</sub> adsorption–desorption (BET), surface basicity, XRD, TGA/DTA, SEM, FTIR and Raman techniques.### The Taguchi design approach was utilized to optimize the transesterification process factors, and among the parameters studied, calcination temperature was found to have a significant influence on YGME yield. At 70 ℃ for 3 h, a YGME yield of 95.9 <span>\\(\\pm 0.94\\)</span>% was obtained using a methanol/YG molar ratio of 15:1 and 1 g (2 wt.% of YG used) of BaO/ZSM-5 sample calcined at 700 ℃. The BaO/ZSM-5 catalyst was reused six times with only a 15% decrease in activity.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"12 3","pages":"199 - 208"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-023-00240-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Biodiesel production from transesterified yellow grease by ZSM-5 zeolite-supported BaO catalyst: process optimization by Taguchi’s experimental design approach\",\"authors\":\"Adeyinka Sikiru Yusuff,&nbsp;Moses Oluwafemi Onibonoje\",\"doi\":\"10.1007/s40243-023-00240-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Methanolysis of yellow grease (YG) was performed to synthesize its corresponding methyl ester (YGME) using BaO loaded on ZSM-5 (BaO/ZSM-5) as a heterogeneous base catalyst that was prepared via metallic solution hydrolysis method and characterized using N<sub>2</sub> adsorption–desorption (BET), surface basicity, XRD, TGA/DTA, SEM, FTIR and Raman techniques.### The Taguchi design approach was utilized to optimize the transesterification process factors, and among the parameters studied, calcination temperature was found to have a significant influence on YGME yield. At 70 ℃ for 3 h, a YGME yield of 95.9 <span>\\\\(\\\\pm 0.94\\\\)</span>% was obtained using a methanol/YG molar ratio of 15:1 and 1 g (2 wt.% of YG used) of BaO/ZSM-5 sample calcined at 700 ℃. The BaO/ZSM-5 catalyst was reused six times with only a 15% decrease in activity.</p></div>\",\"PeriodicalId\":692,\"journal\":{\"name\":\"Materials for Renewable and Sustainable Energy\",\"volume\":\"12 3\",\"pages\":\"199 - 208\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40243-023-00240-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Renewable and Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40243-023-00240-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-023-00240-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

以负载在ZSM-5上的BaO (BaO/ZSM-5)为载体,采用金属溶液水解法制备了非均相碱催化剂,对黄色油脂(YG)进行甲醇水解合成相应的甲酯(YGME),并采用N2吸附-解吸(BET)、表面碱度、XRD、TGA/DTA、SEM、FTIR和拉曼等技术对其进行了表征。采用田口设计方法对酯交换工艺因素进行优化,发现焙烧温度对YGME产率有显著影响。在70℃下反应3 h, YGME产率为95.9 \(\pm 0.94\)% was obtained using a methanol/YG molar ratio of 15:1 and 1 g (2 wt.% of YG used) of BaO/ZSM-5 sample calcined at 700 ℃. The BaO/ZSM-5 catalyst was reused six times with only a 15% decrease in activity.
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biodiesel production from transesterified yellow grease by ZSM-5 zeolite-supported BaO catalyst: process optimization by Taguchi’s experimental design approach

Biodiesel production from transesterified yellow grease by ZSM-5 zeolite-supported BaO catalyst: process optimization by Taguchi’s experimental design approach

Methanolysis of yellow grease (YG) was performed to synthesize its corresponding methyl ester (YGME) using BaO loaded on ZSM-5 (BaO/ZSM-5) as a heterogeneous base catalyst that was prepared via metallic solution hydrolysis method and characterized using N2 adsorption–desorption (BET), surface basicity, XRD, TGA/DTA, SEM, FTIR and Raman techniques.### The Taguchi design approach was utilized to optimize the transesterification process factors, and among the parameters studied, calcination temperature was found to have a significant influence on YGME yield. At 70 ℃ for 3 h, a YGME yield of 95.9 \(\pm 0.94\)% was obtained using a methanol/YG molar ratio of 15:1 and 1 g (2 wt.% of YG used) of BaO/ZSM-5 sample calcined at 700 ℃. The BaO/ZSM-5 catalyst was reused six times with only a 15% decrease in activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials for Renewable and Sustainable Energy
Materials for Renewable and Sustainable Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.90
自引率
2.20%
发文量
8
审稿时长
13 weeks
期刊介绍: Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future. Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality. Topics include: 1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells. 2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion. 3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings. 4. MATERIALS modeling and theoretical aspects. 5. Advanced characterization techniques of MATERIALS Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信