Acta Pharmaceutica Sinica. B最新文献

筛选
英文 中文
Heme oxygenase 1-mediated ferroptosis in Kupffer cells initiates liver injury during heat stroke 血红素加氧酶 1 介导的 Kupffer 细胞铁蛋白沉积引发中暑时的肝损伤
IF 14.7 1区 医学
Acta Pharmaceutica Sinica. B Pub Date : 2024-09-01 DOI: 10.1016/j.apsb.2024.05.007
{"title":"Heme oxygenase 1-mediated ferroptosis in Kupffer cells initiates liver injury during heat stroke","authors":"","doi":"10.1016/j.apsb.2024.05.007","DOIUrl":"10.1016/j.apsb.2024.05.007","url":null,"abstract":"<div><p>With the escalating prevalence of global heat waves, heat stroke has become a prominent health concern, leading to substantial liver damage. Unlike other forms of liver injury, heat stroke-induced damage is characterized by heat cytotoxicity and heightened inflammation, directly contributing to elevated mortality rates. While clinical assessments have identified elevated bilirubin levels as indicative of Kupffer cell dysfunction, their specific correlation with heat stroke liver injury remains unclear. Our hypothesis proposes the involvement of Kupffer cell ferroptosis during heat stroke, initiating IL-1<em>β</em>-mediated inflammation. Using single-cell RNA sequencing of murine macrophages, a distinct and highly susceptible Kupffer cell subtype, Clec4F<sup>+</sup>/CD206<sup>+</sup>, emerged, with heme oxygenase 1 (HMOX-1) playing a pivotal role. Mechanistically, heat-induced HMOX-1, regulated by early growth response factor 1, mediated ferroptosis in Kupffer cells, specifically in the Clec4F<sup>+</sup>/CD206<sup>+</sup> subtype (KC2), activating phosphatidylinositol 4-kinase beta and promoting PI4P production. This cascade triggered NLRP3 inflammasome activation and maturation of IL-1<em>β</em>. These findings underscore the critical role of targeted therapy against HMOX-1 in ferroptosis within Kupffer cells, particularly in Clec4F<sup>+</sup>/CD206<sup>+</sup> KCs. Such an approach has the potential to mitigate inflammation and alleviate acute liver injury in the context of heat stroke, offering a promising avenue for future therapeutic interventions.</p></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":null,"pages":null},"PeriodicalIF":14.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211383524001825/pdfft?md5=74d553b61d5f90a4d253cdbd3f12f480&pid=1-s2.0-S2211383524001825-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141037884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing cancer immunotherapy: Nanotechnology-mediated immunotherapy overcoming immunosuppression 增强癌症免疫疗法:纳米技术介导的免疫疗法克服免疫抑制
IF 14.7 1区 医学
Acta Pharmaceutica Sinica. B Pub Date : 2024-09-01 DOI: 10.1016/j.apsb.2024.05.032
{"title":"Enhancing cancer immunotherapy: Nanotechnology-mediated immunotherapy overcoming immunosuppression","authors":"","doi":"10.1016/j.apsb.2024.05.032","DOIUrl":"10.1016/j.apsb.2024.05.032","url":null,"abstract":"<div><p>Immunotherapy is an important cancer treatment method that offers hope for curing cancer patients. While immunotherapy has achieved initial success, a major obstacle to its widespread adoption is the inability to benefit the majority of patients. The success or failure of immunotherapy is closely linked to the tumor's immune microenvironment. Recently, there has been significant attention on strategies to regulate the tumor immune microenvironment in order to stimulate anti-tumor immune responses in cancer immunotherapy. The distinctive physical properties and design flexibility of nanomedicines have been extensively utilized to target immune cells (including tumor-associated macrophages (TAMs), T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated fibroblasts (TAFs)), offering promising advancements in cancer immunotherapy. In this article, we have reviewed treatment strategies aimed at targeting various immune cells to regulate the tumor immune microenvironment. The focus is on cancer immunotherapy models that are based on nanomedicines, with the goal of inducing or enhancing anti-tumor immune responses to improve immunotherapy. It is worth noting that combining cancer immunotherapy with other treatments, such as chemotherapy, radiotherapy, and photodynamic therapy, can maximize the therapeutic effects. Finally, we have identified the challenges that nanotechnology-mediated immunotherapy needs to overcome in order to design more effective nanosystems.</p></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":null,"pages":null},"PeriodicalIF":14.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211383524002284/pdfft?md5=d37585c43363afd434aefb49831fca8d&pid=1-s2.0-S2211383524002284-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141277123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the role of wound microbiome in diabetic, burn, and germ-free wound repair treated by natural and synthetic scaffolds 揭示伤口微生物群在天然和合成支架处理的糖尿病、烧伤和无菌伤口修复中的作用
IF 14.5 1区 医学
Acta Pharmaceutica Sinica. B Pub Date : 2024-09-01 DOI: 10.1016/j.apsb.2024.08.024
Zeyu Xu, Lixiang Zhang, Qinghan Tang, Chenxi Yang, Xiaotong Ding, Ziyu Wang, Rizhong Huang, Ruihan Jiang, Joannake Maitz, Huaikai Shi, Xin Yan, Mei Dong, Jun Chen, Yiwei Wang
{"title":"Unlocking the role of wound microbiome in diabetic, burn, and germ-free wound repair treated by natural and synthetic scaffolds","authors":"Zeyu Xu, Lixiang Zhang, Qinghan Tang, Chenxi Yang, Xiaotong Ding, Ziyu Wang, Rizhong Huang, Ruihan Jiang, Joannake Maitz, Huaikai Shi, Xin Yan, Mei Dong, Jun Chen, Yiwei Wang","doi":"10.1016/j.apsb.2024.08.024","DOIUrl":"https://doi.org/10.1016/j.apsb.2024.08.024","url":null,"abstract":"In current clinical practice, various dermal templates and skin substitutes are used to enhance wound healing. However, the role of wound commensal microbiome in regulating scaffold performance and the healing process remains unclear. In this study, we investigated the influence of both natural and synthetic scaffolds on the wound commensal microbiome and wound repair in three distinct models including diabetic wounds, burn injuries, and germ-free (GF) wounds. Remarkably, synthetic electrospun polycaprolactone (PCL) scaffolds were observed to positively promote microbiome diversity, leading to enhanced diabetic wound healing compared to the natural scaffolds Integra® (INT) and MatriDerm® (MAD). In contrast, both natural and synthetic scaffolds exhibited comparable effects on the diversity of the microbiome and the healing of burn injuries. In GF wounds with no detectable microorganisms, a reversed healing rate was noted showing natural scaffold (MAD) accelerated wound repair compared to the open or the synthetic scaffold (PCL) treatment. Furthermore, the response of the wound commensal microbiome to PCL scaffolds appears pivotal in promoting anti-inflammatory factors during diabetic wound healing. Our results emphasize that the wound commensal microbiome, mediated by different scaffolds plays an important role in the wound healing process.","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":null,"pages":null},"PeriodicalIF":14.5,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triple three-dimensional MS/MS spectrum facilitates quantitative ginsenosides-targeted sub-metabolome characterization in notoginseng 三重三维 MS/MS 图谱有助于定量分析人参皂苷以田七为靶标的亚代谢组特征
IF 14.7 1区 医学
Acta Pharmaceutica Sinica. B Pub Date : 2024-09-01 DOI: 10.1016/j.apsb.2024.04.029
{"title":"Triple three-dimensional MS/MS spectrum facilitates quantitative ginsenosides-targeted sub-metabolome characterization in notoginseng","authors":"","doi":"10.1016/j.apsb.2024.04.029","DOIUrl":"10.1016/j.apsb.2024.04.029","url":null,"abstract":"<div><p>Although serving as the workhorse, MS/MS cannot fully satisfy the analytical requirements of quantitative sub-metabolome characterization. Because more information intrinsically correlates to more structural and concentration clues, here, efforts were devoted to comprehensively tracing and deciphering MS/MS behaviors through constructing triple three-dimensional (3×3D)-MS/MS spectrum. Ginsenosides-targeted metabolomics of notoginseng, one of the most famous edible medicinal plants, was employed as a proof-of-concept. Serial authentic ginsenosides were deployed to build the correlations between 3×3D-MS/MS spectra and structure/concentration features. Through assaying ginsenosides with progressive concentrations using QTOF-MS to configure 1<sup>st</sup> 3D spectrum, the generations of MS<sup>1</sup> spectral signals, particularly multi-charged multimer anions, <em>e.g.</em>, [2M–2H]<sup>2–</sup> and [2M+2HCOO]<sup>2–</sup> ions, relied on both concentration and the amount of sugar chains. By programming progressive collision energies to the front collision cell of Qtrap-MS device to gain 2<sup>nd</sup> 3D spectrum, optimal collision energy (OCE) corresponding to the glycosidic bond fission was primarily correlated with the masses of precursor and fragment ions and partially governed by the glycosidation site. The quantitative relationships between OCEs and masses of precursor and fragment ions were utilized to build large-scale quantitative program for ginsenosides. After applying progressive exciting energies to the back collision chamber to build 3<sup>rd</sup> 3D spectrum, the fragment ion and the decomposition product anion exhibited identical dissociation trajectories when they shared the same molecular geometry. After ginsenosides-focused quantitative metabolomics, significant differences occurred for sub-metabolome amongst different parts of notoginseng. The differential ginsenosides were confirmatively identified by applying the correlations between 3×3D-MS/MS spectra and structures. Together, 3×3D-MS/MS spectrum covers all MS/MS behaviors and dramatically facilitates sub-metabolome characterization from both quantitative program development and structural identification.</p></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":null,"pages":null},"PeriodicalIF":14.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211383524001709/pdfft?md5=02890f4093b1ec4a28bcf9078dcb5ae2&pid=1-s2.0-S2211383524001709-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author correction to “Gas-propelled nanomotors alleviate colitis through the regulation of intestinal immunoenvironment-hematopexis-microbiota circuits” [Acta Pharm Sin B 14 (2024) 2732–2747] 作者对《气体推进纳米电机通过调节肠道免疫环境-血液循环-微生物群回路缓解结肠炎》的更正 [Acta Pharm Sin B 14(6) (2024) 2732-2747]
IF 14.7 1区 医学
Acta Pharmaceutica Sinica. B Pub Date : 2024-09-01 DOI: 10.1016/j.apsb.2024.06.005
{"title":"Author correction to “Gas-propelled nanomotors alleviate colitis through the regulation of intestinal immunoenvironment-hematopexis-microbiota circuits” [Acta Pharm Sin B 14 (2024) 2732–2747]","authors":"","doi":"10.1016/j.apsb.2024.06.005","DOIUrl":"10.1016/j.apsb.2024.06.005","url":null,"abstract":"","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":null,"pages":null},"PeriodicalIF":14.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211383524002363/pdfft?md5=bc22f7a4ec1126825d56cb2ab7844190&pid=1-s2.0-S2211383524002363-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141406536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schisanhenol ameliorates non-alcoholic fatty liver disease via inhibiting miR-802 activation of AMPK-mediated modulation of hepatic lipid metabolism 五味子酚通过抑制 miR-802 激活 AMPK 介导的肝脂代谢调节来改善非酒精性脂肪肝
IF 14.7 1区 医学
Acta Pharmaceutica Sinica. B Pub Date : 2024-09-01 DOI: 10.1016/j.apsb.2024.05.014
{"title":"Schisanhenol ameliorates non-alcoholic fatty liver disease via inhibiting miR-802 activation of AMPK-mediated modulation of hepatic lipid metabolism","authors":"","doi":"10.1016/j.apsb.2024.05.014","DOIUrl":"10.1016/j.apsb.2024.05.014","url":null,"abstract":"<div><p>Non-alcoholic fatty liver disease (NAFLD), characterized by hepatic steatosis, is a common metabolic liver disease worldwide. Currently, satisfactory drugs for NAFLD treatment remain lacking. Obesity and diabetes are the leading causes of NAFLD, and compounds with anti-obesity and anti-diabetic activities are considered suitable candidates for treating NAFLD. In this study, biochemical and histological assays revealed that a natural lignan schisanhenol (SAL) effectively decreased lipid accumulation and improved hepatic steatosis in free fatty acid (FFA)-treated HepG2 cells and high-fat diet (HFD)-induced NAFLD mice. Further, molecular analyses, microRNA (miRNA)-seq, and bioinformatics analyses revealed that SAL may improve NAFLD by targeting the miR-802/adenosine monophosphate-activated protein kinase (AMPK) pathway. Liver-specific overexpression of miR-802 in NAFLD mice significantly impaired SAL-mediated liver protection and decreased the protein levels of phosphorylated (p)-AMPK and PRKAB1. Dual-luciferase assay analysis further confirmed that miR-802 inhibits hepatic AMPK expression by binding to the 3' untranslated region of mouse <em>Prkab1</em> or human <em>PRKAA1</em>. Additionally, genetic silencing of <em>PRKAA1</em> blocked SAL-induced AMPK pathway activation in FFA-treated HepG2 cells. The results demonstrate that SAL is an effective drug candidate for treating NAFLD through regulating miR-802/AMPK-mediated lipid metabolism.</p></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":null,"pages":null},"PeriodicalIF":14.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211383524001916/pdfft?md5=cd03a21ffea0bdf68a514b530753eabb&pid=1-s2.0-S2211383524001916-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141038312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into therapeutic peptides in the cancer-immunity cycle: Update and challenges 洞察癌症免疫循环中的治疗肽:最新进展与挑战
IF 14.7 1区 医学
Acta Pharmaceutica Sinica. B Pub Date : 2024-09-01 DOI: 10.1016/j.apsb.2024.05.013
{"title":"Insights into therapeutic peptides in the cancer-immunity cycle: Update and challenges","authors":"","doi":"10.1016/j.apsb.2024.05.013","DOIUrl":"10.1016/j.apsb.2024.05.013","url":null,"abstract":"<div><p>Immunotherapies hold immense potential for achieving durable potency and long-term survival opportunities in cancer therapy. As vital biological mediators, peptides with high tissue penetration and superior selectivity offer significant promise for enhancing cancer immunotherapies (CITs). However, physicochemical peptide features such as conformation and stability pose challenges to their on-target efficacy. This review provides a comprehensive overview of recent advancements in therapeutic peptides targeting key steps of the cancer-immunity cycle (CIC), including tumor antigen presentation, immune cell regulation, and immune checkpoint signaling. Particular attention is given to the opportunities and challenges associated with these peptides in boosting CIC within the context of clinical progress. Furthermore, possible future developments in this field are also discussed to provide insights into emerging CITs with robust efficacy and safety profiles.</p></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":null,"pages":null},"PeriodicalIF":14.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211383524001898/pdfft?md5=599650cd188259679f8972ed29d1061c&pid=1-s2.0-S2211383524001898-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141032512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transepithelial transport of nanoparticles in oral drug delivery: From the perspective of surface and holistic property modulation 纳米颗粒在口服给药中的跨上皮细胞转运:从表面和整体特性调控的角度来看
IF 14.7 1区 医学
Acta Pharmaceutica Sinica. B Pub Date : 2024-09-01 DOI: 10.1016/j.apsb.2024.06.015
{"title":"Transepithelial transport of nanoparticles in oral drug delivery: From the perspective of surface and holistic property modulation","authors":"","doi":"10.1016/j.apsb.2024.06.015","DOIUrl":"10.1016/j.apsb.2024.06.015","url":null,"abstract":"<div><p>Despite the promising prospects of nanoparticles in oral drug delivery, the process of oral administration involves a complex transportation pathway that includes cellular uptake, intracellular trafficking, and exocytosis by intestinal epithelial cells, which are necessary steps for nanoparticles to enter the bloodstream and exert therapeutic effects. Current researchers have identified several crucial factors that regulate the interaction between nanoparticles and intestinal epithelial cells, including surface properties such as ligand modification, surface charge, hydrophilicity/hydrophobicity, intestinal protein corona formation, as well as holistic properties like particle size, shape, and rigidity. Understanding these properties is essential for enhancing transepithelial transport efficiency and designing effective oral drug delivery systems. Therefore, this review provides a comprehensive overview of the surface and holistic properties that influence the transepithelial transport of nanoparticles, elucidating the underlying principles governing their impact on transepithelial transport. The review also outlines the chosen of parameters to be considered for the subsequent design of oral drug delivery systems.</p></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":null,"pages":null},"PeriodicalIF":14.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211383524002466/pdfft?md5=bfcf1e29df1dfef63761c3b3f5f58b81&pid=1-s2.0-S2211383524002466-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141528646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An iron-based metal-organic framework nanoplatform for enhanced ferroptosis and oridonin delivery as a comprehensive antitumor strategy 一种铁基金属有机框架纳米平台,可作为一种综合抗肿瘤策略用于增强铁氧化酶和奥利多宁的递送
IF 14.7 1区 医学
Acta Pharmaceutica Sinica. B Pub Date : 2024-09-01 DOI: 10.1016/j.apsb.2024.05.015
{"title":"An iron-based metal-organic framework nanoplatform for enhanced ferroptosis and oridonin delivery as a comprehensive antitumor strategy","authors":"","doi":"10.1016/j.apsb.2024.05.015","DOIUrl":"10.1016/j.apsb.2024.05.015","url":null,"abstract":"<div><p>Ferroptosis is a recently discovered pathway for regulated cell death pathway. However, its efficacy is affected by limited iron content and intracellular ion homeostasis. Here, we designed a metal-organic framework (MOF)-based nanoplatform that incorporates calcium peroxide (CaO<sub>2</sub>) and oridonin (ORI). This platform can improve the tumor microenvironment and disrupt intracellular iron homeostasis, thereby enhancing ferroptosis therapy. Fused cell membranes (FM) were used to modify nanoparticles (ORI@CaO<sub>2</sub>@Fe-TCPP, NPs) to produce FM@ORI@CaO<sub>2</sub>@Fe-TCPP (FM@NPs). The encapsulated ORI inhibited the HSPB1/PCBP1/IREB2 and FSP1/COQ10 pathways simultaneously, working in tandem with Fe<sup>3+</sup> to induce ferroptosis. Photodynamic therapy (PDT) guided by porphyrin (TCPP) significantly enhanced ferroptosis through excessive accumulation of reactive oxygen species (ROS). This self-amplifying strategy promoted robust ferroptosis, which could work synergistically with FM-mediated immunotherapy. <em>In vivo</em> experiments showed that FM@NPs inhibited 91.57% of melanoma cells within six days, a rate 5.6 times higher than chemotherapy alone. FM@NPs were biodegraded and directly eliminated in the urine or faeces without substantial toxicity. Thus, this study demonstrated that combining immunotherapy with efficient ferroptosis induction through nanotechnology is a feasible and promising strategy for melanoma treatment.</p></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":null,"pages":null},"PeriodicalIF":14.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211383524001928/pdfft?md5=58a26cbc746505351825e4e0d83ffaea&pid=1-s2.0-S2211383524001928-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141134715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SARS-CoV-2 ORF10 hijacking ubiquitination machinery reveals potential unique drug targeting sites SARS-CoV-2 ORF10 劫持泛素化机制揭示了潜在的独特药物靶点
IF 14.7 1区 医学
Acta Pharmaceutica Sinica. B Pub Date : 2024-09-01 DOI: 10.1016/j.apsb.2024.05.018
{"title":"SARS-CoV-2 ORF10 hijacking ubiquitination machinery reveals potential unique drug targeting sites","authors":"","doi":"10.1016/j.apsb.2024.05.018","DOIUrl":"10.1016/j.apsb.2024.05.018","url":null,"abstract":"<div><p>Viruses often manipulate ubiquitination pathways to facilitate their replication and pathogenesis. CUL2<sup>ZYG11B</sup> known as the substrate receptor of cullin-2 RING E3 ligase, is bound by SARS-CoV-2 ORF10 to increase its E3 ligase activity, leading to degradation of IFT46, a protein component of the intraflagellar transport (IFT) complex B. This results in dysfunctional cilia, which explains certain symptoms that are specific to COVID-19. However, the precise molecular mechanism of how ORF10 recognizes CUL2<sup>ZYG11B</sup> remains unknown. Here, we determined the crystal structure of CUL2<sup>ZYG11B</sup> complexed with the N-terminal extension (NTE) of SARS-CoV-2 ORF10 (2.9 Å). The structure reveals that the ORF10 N-terminal heptapeptide (NTH) mimics the Gly/N-degron to bind CUL2<sup>ZYG11B</sup>. Mutagenesis studies identified key residues within ORF10 that are key players in its interaction with CUL2<sup>ZYG11B</sup> both in ITC assay and <em>in vivo</em> cells. In addition, we prove that enhancement of CUL2<sup>ZYG11B</sup> activity for IFT46 degradation by which ORF10-mediated correlates with the binding affinity between ORF10 and CUL2<sup>ZYG11B</sup>. Finally, we used a Global Protein Stability system to show that the NTH of ORF10 mimics the Gly/N-degron motif, thereby binding competitively to CUL2<sup>ZYG11B</sup> and inhibiting the degradation of target substrates bearing the Gly/N-degron motif. Overall, this study sheds light on how SARS-CoV-2 ORF10 exploits the ubiquitination machinery for proteasomal degradation, and offers valuable insights for optimizing PROTAC-based drug design based on NTH CUL2<sup>ZYG11B</sup> interaction, while pinpointing a promising target for the development of treatments for COVID-19.</p></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":null,"pages":null},"PeriodicalIF":14.7,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211383524001965/pdfft?md5=299dc86cc39ceb8738c49c15899f2b3d&pid=1-s2.0-S2211383524001965-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141137149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信