Yutian Lei , Yuan Shen , Feng Chen , Rui He , Zhang Zhang , Ying Zhou , Jin-Chen Yu , Jacques Crommen , Zhengjin Jiang , Qiqin Wang
{"title":"Multiepitope recognition technology promotes the in-depth analysis of antibody‒drug conjugates","authors":"Yutian Lei , Yuan Shen , Feng Chen , Rui He , Zhang Zhang , Ying Zhou , Jin-Chen Yu , Jacques Crommen , Zhengjin Jiang , Qiqin Wang","doi":"10.1016/j.apsb.2024.06.007","DOIUrl":"10.1016/j.apsb.2024.06.007","url":null,"abstract":"<div><div>The dynamic tracking of antibody‒drug conjugates (ADCs) in serum is crucial. However, a versatile bioanalytical platform is lacking due to serious matrix interferences, the heterogeneity and complex biotransformation of ADCs, and the recognition deficiencies of traditional affinity technologies. To overcome this, a multiepitope recognition technology (MERT) was developed by simultaneously immobilizing CDR and non-CDR ligands onto MOF@AuNPs. MERT's excellent specificity, ultrahigh ligand density, and potential synergistic recognition ability enable it to target the different key regions of ADCs to overcome the deficiencies of traditional technologies. The binding capacity of MERT for antibodies is ten to hundred times higher than that of the mono-epitope or Fc-specific affinity technologies. Since MERT can efficiently capture target ADCs from serum, a novel bioanalytical platform based on MERT and RPLC‒QTOF-MS has been developed to monitor the dynamic changes of ADCs in serum, including the fast changes of drug-to-antibody ratio from 3.67 to 0.22, the loss of payloads (maytansinol), and the unexpected hydrolysis of the succinimide ring of the linker, which will contribute to clarify the fate of ADCs and provide a theoretical basis for future design. In summary, the MERT-based versatile platform will open a new avenue for in-depth studies of ADCs in biological fluids.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"14 11","pages":"Pages 4962-4976"},"PeriodicalIF":14.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141528595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jinhu Liu , Han Yang , Xiao Sang, Tong Gao, Zipeng Zhang, Shunli Fu, Huizhen Yang, Lili Chang, Xiaoqing Liu, Shuang Liang, Shijun Yuan, Suyun Wei, Yuxin Yang, Xiaoxin Yan, Xinke Zhang, Weiwei Mu, Yongjun Liu, Na Zhang
{"title":"Localized light-triggered release macrophage cytopharmaceuticals containing O-nitrobenzyl group for enhanced solid tumor cell-chemotherapy","authors":"Jinhu Liu , Han Yang , Xiao Sang, Tong Gao, Zipeng Zhang, Shunli Fu, Huizhen Yang, Lili Chang, Xiaoqing Liu, Shuang Liang, Shijun Yuan, Suyun Wei, Yuxin Yang, Xiaoxin Yan, Xinke Zhang, Weiwei Mu, Yongjun Liu, Na Zhang","doi":"10.1016/j.apsb.2024.08.033","DOIUrl":"10.1016/j.apsb.2024.08.033","url":null,"abstract":"<div><div>Cytopharmaceutical based on macrophages is a breakthrough in the field of targeted drug delivery. However, it remains a challenge to localize and control drug release while retaining macrophage activity and exerting its immunotherapeutic effect. Herein, a localized light-triggered release macrophage cytopharmaceutical (USIP@M) was proposed, which could utilize the tumor targeting and immunotherapy effects of macrophages to reverse the immune suppression of tumor microenvironment (TME). Amphiphilic block copolymers with ultraviolet (UV)-responsive <em>o</em>-nitrobenzyl groups were synthesized and co-loaded with sorafenib (SF), IMD-0354 (IMD), and upconverting nanoparticles (UCNPs), which were then taken up by macrophages, and the targeted delivery of drugs was realized by using the tumor tropism of macrophages. UCNPs converted near-infrared light with strong penetrability and high safety into UV light, which promoted the photoresponsive depolymerization of block copolymers and production of exosomes from USIP@M, accelerated drug efflux and maintained the activity of macrophages. IMD simultaneously polarized carrier macrophages and tumor-associated macrophages to exert the antitumor effect of macrophages, enhance T cell immunity, and alleviate the immunosuppressive state of TME. Synergistically with the chemotherapeutic effect of SF, it could effectively kill tumors. In conclusion, based on the localized light-triggered release strategy, this study constructed a novel macrophage cytopharmaceutical that could localize and control drug release while retaining the activity of macrophages and exerting its immunotherapeutic effect, which could effectively treat solid tumors.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"14 11","pages":"Pages 5053-5068"},"PeriodicalIF":14.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142707029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pioneering integration of combinatorial chemistry and machine learning to accelerate the development of tailored LNPs for mRNA delivery","authors":"Xi He , Pingyu Wang , Linbo Qing , Xiangrong Song","doi":"10.1016/j.apsb.2024.08.032","DOIUrl":"10.1016/j.apsb.2024.08.032","url":null,"abstract":"","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"14 11","pages":"Pages 5079-5081"},"PeriodicalIF":14.7,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Wang , Shiwei Deng , Jinzhong Lin , Defang Ouyang
{"title":"Modeling on in vivo disposition and cellular transportation of RNA lipid nanoparticles via quantum mechanics/physiologically-based pharmacokinetic approaches","authors":"Wei Wang , Shiwei Deng , Jinzhong Lin , Defang Ouyang","doi":"10.1016/j.apsb.2024.06.011","DOIUrl":"10.1016/j.apsb.2024.06.011","url":null,"abstract":"<div><div>The lipid nanoparticle (LNP) has been so far proven as a strongly effective delivery system for mRNA and siRNA. However, the mechanisms of LNP's distribution, metabolism, and elimination are complicated, while the transportation and pharmacokinetics (PK) of LNP are just sparsely investigated and simply described. This study aimed to build a model for the transportation of RNA-LNP in Hela cells, rats, mice, and humans by physiologically based pharmacokinetic (PBPK) and quantum mechanics (QM) models with integrated multi-source data. LNPs with different ionizable lipids, particle sizes, and doses were modeled and compared by recognizing their critical parameters dominating PK. Some interesting results were found by the models. For example, the metabolism of ionizable lipids was first limited by the LNP disassembly rate instead of the hydrolyzation of ionizable lipids; the ability of RNA release from endosomes for three ionizable lipids was quantitively derived and can predict the probability of RNA release. Moreover, the biodegradability of three ionizable lipids was estimated by the QM method and the is generally consistent with the result of PBPK result. In summary, the transportation model of RNA LNP among various species for the first time was successfully constructed. Various <em>in vitro</em> and <em>in vivo</em> pieces of evidence were integrated through QM/PBPK multi-level modeling. The resulting new understandings are related to biodegradability, safety, and RNA release ability which are highly concerned issues of the formulation. This would benefit the design and research of RNA-LNP in the future.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"14 10","pages":"Pages 4591-4607"},"PeriodicalIF":14.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141775590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering the microenvironment of P450s to enhance the production of diterpenoids in Saccharomyces cerevisiae","authors":"","doi":"10.1016/j.apsb.2024.05.019","DOIUrl":"10.1016/j.apsb.2024.05.019","url":null,"abstract":"<div><div>Cytochrome P450 enzymes play a crucial role as catalysts in the biosynthesis of numerous plant natural products (PNPs). Enhancing the catalytic activity of P450s in host microorganisms is essential for the efficient production of PNPs through synthetic biology. In this study, we engineered <em>Saccharomyces cerevisiae</em> to optimize the microenvironment for boosting the activities of P450s, including coexpression with the redox partner genes, enhancing NADPH supply, expanding the endoplasmic reticulum (ER), strengthening heme biosynthesis, and regulating iron uptake. This created a platform for the efficient production 11,20-dihydroxyferruginol, a key intermediate of the bioactive compound tanshinones. The yield was enhanced by 42.1-fold through 24 effective genetic edits. The optimized strain produced up to 67.69 ± 1.33 mg/L 11,20-dihydroxyferruginol in shake flasks. Our work represents a promising advancement toward constructing yeast cell factories containing P450s and paves the way for microbial biosynthesis of tanshinones in the future.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"14 10","pages":"Pages 4608-4618"},"PeriodicalIF":14.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141141231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhibition of liver cholesterol synthesis by a diet-induced gut hormone","authors":"Xiabing Huang , Jianping Ye","doi":"10.1016/j.apsb.2024.07.026","DOIUrl":"10.1016/j.apsb.2024.07.026","url":null,"abstract":"","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"14 10","pages":"Pages 4625-4627"},"PeriodicalIF":14.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Zhang , Qiong Wu , Yifei Xie , Feng Li , Huifang Wei , Yanan Jiang , Yan Qiao , Yinhua Li , Yanan Sun , Han Huang , Mengmeng Ge , Dengyun Zhao , Zigang Dong , Kangdong Liu
{"title":"Ribonucleotide reductase small subunit M2 promotes the proliferation of esophageal squamous cell carcinoma cells via HuR-mediated mRNA stabilization","authors":"Jing Zhang , Qiong Wu , Yifei Xie , Feng Li , Huifang Wei , Yanan Jiang , Yan Qiao , Yinhua Li , Yanan Sun , Han Huang , Mengmeng Ge , Dengyun Zhao , Zigang Dong , Kangdong Liu","doi":"10.1016/j.apsb.2024.07.022","DOIUrl":"10.1016/j.apsb.2024.07.022","url":null,"abstract":"<div><div>Esophageal squamous cell carcinoma (ESCC), a malignancy of the digestive system, is highly prevalent and the primary cause of cancer-related deaths worldwide due to the lack of early diagnostic biomarkers and effective therapeutic targets. Dysregulated ribonucleotide reductase (RNR) expression has been confirmed to be causally linked to tumorigenesis. This study demonstrated that ribonucleotide reductase small subunit M2 (RRM2) is significantly upregulated in ESCC tissue and that its expression is negatively correlated with clinical outcomes. Mechanistically, HuR promotes <em>RRM2</em> mRNA stabilization by binding to the adenine/uridine (AU)-rich elements (AREs) within the 3′UTR, resulting in persistent overexpression of RRM2. Furthermore, bifonazole is identified as an inhibitor of HuR <em>via</em> computational screening and molecular docking analysis. Bifonazole disrupts HuR-ARE interactions by competitively binding to HuR at F65, R97, I103, and R153 residues, resulting in reduced RRM2 expression. Furthermore, bifonazole exhibited antitumor effects on ESCC patient-derived xenograft (PDX) models by decreasing RRM2 expression and the dNTP pool. In summary, this study reveals the interaction network among HuR, RRM2, and bifonazole and demonstrated that bifonazole is a potential therapeutic compound for ESCC through inhibition of the HuR/RRM2 axis.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"14 10","pages":"Pages 4329-4344"},"PeriodicalIF":14.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiahui Zou , Xuyang Xing , Chao Teng , Qingling Zhao , Wei He , Xuri Wu , Yuanzheng Xia
{"title":"Cocrystal@protein-anchoring nanococktail for combinatorially treating multidrug-resistant cancer","authors":"Jiahui Zou , Xuyang Xing , Chao Teng , Qingling Zhao , Wei He , Xuri Wu , Yuanzheng Xia","doi":"10.1016/j.apsb.2024.08.014","DOIUrl":"10.1016/j.apsb.2024.08.014","url":null,"abstract":"<div><div>Multidrug resistance (MDR), the major mechanism by which various cancers develop specific resistance to therapeutic agents, has set up enormous obstacles to many forms of tumor chemotherapy. Traditional cocktail therapy administration, based on the combination of multiple drugs for anti-MDR chemotherapy, often suffers from inconsistent <em>in vivo</em> pharmacokinetic behaviors that cannot act synchronously on the lesions, leading to limited pharmacodynamic outcomes. Despite the emergence of nanomedicines, which has improved chemotherapeutic drugs’ bioavailability and therapeutic effect on clinical application, these monotherapy-based nano-formulations still show poor progression in overcoming MDR. Herein, a “one stone and three birds” nanococktail integrated by a cocrystal@protein-anchoring strategy was purposed for triple-payload delivery, which paclitaxel-disulfiram cocrystal-like nanorods (NRs) were anchored with the basic protein drug Cytochrome <em>c</em> (Cyt C), followed by hyaluronic-acid modification. In particular, NRs were utilized as carrier-like particles to synchronously deliver biomacromolecule Cyt C into tumor cells and then promote cell apoptosis. Of note, on A549/Taxol drug-resistant tumor-bearing mice, the system with extraordinarily high encapsulation efficiency demonstrated prolonged <em>in vivo</em> circulation and increased tumor-targeting accumulation, significantly reversing tumor drug resistance and improving therapeutic efficacy. Our mechanistic study indicated that the system induced the apoptosis of Taxol-resistant tumor cells through the signal axis P-glycoprotein/Cyt C/caspase 3. Collectively, this nanococktail strategy offers a promising approach to improve the sensitivity of tumor cells to chemotherapeutic drugs and strengthen intractable drug-resistant oncotherapy.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"14 10","pages":"Pages 4509-4525"},"PeriodicalIF":14.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142186908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Disease-derived circulating extracellular vesicle preconditioning: A promising strategy for precision mesenchymal stem cell therapy","authors":"","doi":"10.1016/j.apsb.2024.06.027","DOIUrl":"10.1016/j.apsb.2024.06.027","url":null,"abstract":"<div><div>Mesenchymal stem cell (MSC)-based therapies have emerged as promising methods for regenerative medicine; however, how to precisely enhance their tissue repair effects is still a major question in the field. Circulating extracellular vesicles (EVs) from diseased states carry diverse pathological information and affect the functions of recipient cells. Based on this unique property, we report that disease-derived circulating EV (disease-EV) preconditioning is a potent strategy for precisely enhancing the tissue repair potency of MSCs in diverse disease models. Briefly, plasma EVs from lung or kidney tissue injuries were shown to contain distinctly enriched molecules and were shown to induce tissue injury-specific gene expression responses in cultured MSCs. Disease-EV preconditioning improved the performance (including proliferation, migration, and growth factor production) of MSCs through metabolic reprogramming (such as <em>via</em> enhanced oxidative phosphorylation and lipid metabolism) without inducing an adverse immune response. Consequently, compared with normal MSCs, disease-EV-preconditioned MSCs exhibited superior tissue repair effects (including anti-inflammatory and antiapoptotic effects) in diverse types of tissue injury (such as acute lung or kidney injury). Disease-derived EVs may serve as a type of “off-the-shelf” product due to multiple advantages, such as flexibility, stability, long-term storage, and ease of shipment and use. This study highlights the idea that disease-EV preconditioning is a robust strategy for precisely enhancing the regenerative capacity of MSC-based therapies.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"14 10","pages":"Pages 4526-4543"},"PeriodicalIF":14.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141549273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}