Macromolecular Research最新文献

筛选
英文 中文
Comparative evaluation of sponges using demineralized bone particles derived from poultry for bone regeneration 使用家禽脱矿骨颗粒进行骨再生的海绵的比较评价
IF 2.8 4区 工程技术
Macromolecular Research Pub Date : 2024-12-03 DOI: 10.1007/s13233-024-00345-8
Jeong Eun Song, Cheol Ui Song, Seung Ho Choe, Gilson Khang, Sun-Jung Yoon
{"title":"Comparative evaluation of sponges using demineralized bone particles derived from poultry for bone regeneration","authors":"Jeong Eun Song,&nbsp;Cheol Ui Song,&nbsp;Seung Ho Choe,&nbsp;Gilson Khang,&nbsp;Sun-Jung Yoon","doi":"10.1007/s13233-024-00345-8","DOIUrl":"10.1007/s13233-024-00345-8","url":null,"abstract":"<div><p>Bone regeneration is essential for treating critically sized bone defects, which are challenging to restore naturally. The traditional methods like autogenous bone grafting have limitations, prompting research into alternative materials such as demineralized bone matrix (DBM). While bovine and porcine DBMs are common, they have stability and safety concerns, leading to the exploration of poultry-derived DBPs. The study aimed to fabricate scaffolds using DBPs from different poultry species and compare their effectiveness in bone regeneration. DBPs were extracted from the femurs and tibias of chickens, ducks, and Yeonsan ogolgye (<i>Gallus gallus domesticus Brisson</i>). These DBPs were used to create sponges, which were then characterized for their physical and chemical properties. The bone marrow-derived stem cells (rBMSCs) from rabbits were seeded onto these sponges to evaluate their biocompatibility and bone regeneration potential in vitro. The sponges were porous, facilitating cell infiltration and nutrient exchange, with different compressive strengths and porosity levels based on the poultry source. The sponges supported cell proliferation, with the Yeonsan ogolgye-derived sponge (GDS) showing the highest levels of osteogenic markers, likely due to its melanin content, which enhances bone growth factors. The study found that all sponges were biocompatible, with the GDS being the most effective in promoting bone regeneration. Poultry-derived DBP sponges, especially those from Yeonsan ogolgye, are promising candidates for bone graft materials due to their favorable properties in supporting bone regeneration.</p><h3>Graphic abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"33 1","pages":"27 - 38"},"PeriodicalIF":2.8,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the thermal conductivity of epoxy molding compounds by adding SiO2-embedded carbon nanofibers for semiconductor packaging applications 通过在半导体封装应用中添加二氧化硅嵌入碳纳米纤维来提高环氧成型化合物的导热性
IF 2.8 4区 工程技术
Macromolecular Research Pub Date : 2024-10-23 DOI: 10.1007/s13233-024-00317-y
Yeon-Ryong Chu, Zambaga Otgonbayar, Gyu-Sik Park, Suk Jekal, Ha-Yeong Kim, Jiwon Kim, Yoon-Ho Ra, Seulki Song, Chang-Min Yoon
{"title":"Enhancing the thermal conductivity of epoxy molding compounds by adding SiO2-embedded carbon nanofibers for semiconductor packaging applications","authors":"Yeon-Ryong Chu,&nbsp;Zambaga Otgonbayar,&nbsp;Gyu-Sik Park,&nbsp;Suk Jekal,&nbsp;Ha-Yeong Kim,&nbsp;Jiwon Kim,&nbsp;Yoon-Ho Ra,&nbsp;Seulki Song,&nbsp;Chang-Min Yoon","doi":"10.1007/s13233-024-00317-y","DOIUrl":"10.1007/s13233-024-00317-y","url":null,"abstract":"<div><p>This study presents the synthesis of silica-embedded carbon nanofibers (SiO<sub>2</sub>/eCNFs) as additives to enhance the heat dissipation properties of epoxy molding compounds (EMCs) for semiconductor packaging. Three different sized SiO<sub>2</sub> nanoparticles were prepared and added to the precursor solution for polyacrylonitrile (PAN) nanofibers. Through electrospinning and carbonization, SiO<sub>2</sub> nanoparticles-embedded PAN nanofibers were successfully converted to SiO<sub>2</sub>/eCNFs. As-fabricated SiO<sub>2</sub>/eCNFs were mixed with EMC in different concentrations from 0.1 to 1.0 wt% to investigate the effect of SiO<sub>2</sub>/eCNFs on EMC in perspective of thermal and mechanical properties. Under our experimental conditions, the addition of 500SiO<sub>2</sub>/eCNFs with 0.4 wt% EMC achieved a 67% enhancement in thermal conductivity and a 43% higher impact strength compared to pristine EMC. The improved thermal and mechanical properties by adding SiO<sub>2</sub>/eCNFs additives can be attributed to two factors: one-dimensional carbon and embedded SiO<sub>2</sub> nanoparticles. The presence of one-dimensional carbon successfully enhanced the thermal conductivity owing to its natural graphitic characteristics and dimensional advantages. In addition, the optimal size of the SiO<sub>2</sub> nanoparticles provided more heat dissipation routes while maintaining the packing factor compatibility with the SiO<sub>2</sub> fillers in the EMC. In practical EMC applications for semiconductor chips, infrared (IR) camera observations confirmed a faster increase in the surface temperature with the use of SiO<sub>2</sub>/eCNFs-EMC, demonstrating the potential of these new EMC additives as next-generation high-performance semiconductors.</p><h3>Graphical abstract</h3><p>The improvement in the thermal conductivity of the chip molded in epoxy molding compound (EMC) through the addition of SiO<sub>2</sub>-embedded carbon nanofibers (SiO<sub>2</sub>/eCNFs) is demonstrated. The SiO<sub>2</sub>/eCNFs-EMC molded chips exhibited enhanced thermal conductivity, attributed to the formation of heat pathways through the combination of SiO<sub>2</sub> and CNFs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"33 1","pages":"105 - 116"},"PeriodicalIF":2.8,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced antimicrobial property of polyurethane fibers bearing nanoparticles of polyacrylic acid-grafted oleyl amine and zwitterion 聚丙烯酸接枝油胺和两性离子纳米颗粒增强聚氨酯纤维的抗菌性能
IF 2.8 4区 工程技术
Macromolecular Research Pub Date : 2024-10-08 DOI: 10.1007/s13233-024-00316-z
Arbanah binti Muhammad, Kun Tian, Juhyun Park
{"title":"Enhanced antimicrobial property of polyurethane fibers bearing nanoparticles of polyacrylic acid-grafted oleyl amine and zwitterion","authors":"Arbanah binti Muhammad,&nbsp;Kun Tian,&nbsp;Juhyun Park","doi":"10.1007/s13233-024-00316-z","DOIUrl":"10.1007/s13233-024-00316-z","url":null,"abstract":"<div><p>The antimicrobial performance of polyurethane (PU) fiber was significantly enhanced by integrating nanoparticles fabricated from polymers based on a zwitterion in polyacrylic acid grafted oleyl amine (PAA-g-OA). The PU fiber was fabricated by blending PU with colloidal nanoparticles, PAA-g-OA/zwitterion. Our findings showed a notable enhancement in antimicrobial properties of PU fibers bearing polymer NPs, increasing to 99.9% with the grafting of the zwitterion into PAA-g-OA even after a laundering process with a detergent. This improvement is primarily attributed to the bacteriostatic effect of the zwitterion, which enhances electrostatic attraction and hydration, because of the substantial difference in removing gram-positive bacteria (S. aureus) compared to gram-negative bacteria (E. coli).</p><h3>Graphical abstract</h3><p>Antibacterial polyurethane fibers bearing nanoparticles with surface zwitterions</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"33 1","pages":"77 - 84"},"PeriodicalIF":2.8,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142994696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
pH-responsive acrylic resin for the sustained release and cellular imaging of rhodamine-nido-carborane fluorescent complexes ph响应丙烯酸树脂罗丹明-尼多-碳硼烷荧光复合物的缓释和细胞成像
IF 2.8 4区 工程技术
Macromolecular Research Pub Date : 2024-09-20 DOI: 10.1007/s13233-024-00313-2
Tong Fang, Feng Jin
{"title":"pH-responsive acrylic resin for the sustained release and cellular imaging of rhodamine-nido-carborane fluorescent complexes","authors":"Tong Fang,&nbsp;Feng Jin","doi":"10.1007/s13233-024-00313-2","DOIUrl":"10.1007/s13233-024-00313-2","url":null,"abstract":"<div><p>Carborane has been extensively researched and used in the anti-tumor sector because of its high boron content and remarkable chemical stability. Its limited water solubility, however, stems from the fact that it is a fat-soluble molecule. In this paper, firstly, the water-soluble <i>nido</i>-carborane potassium salt was prepared by the nucleophilic deboronation of <i>closo</i>-o-carborane, then rhodamine B is introduced as a fluorescent marker, and finally, four acrylic resins with different characteristics are coated to obtain <b>L100-Rho-B</b>, <b>EPO-Rho-B</b>, <b>RL-Rho-B</b>, and <b>RS-Rho-B</b>. Four kinds of borane compounds were characterized. The wavelength range of the fluorescence emission varied between 568 and 579 nm in several organic solvents. The chemicals were seen to be dispersed in long strips or stacked in sheets using transmission electron microscopy. A simulated in vitro release test demonstrated that the resin’s characteristics affected the composite’s release. The release performance of <b>L100-Rho-B</b> and <b>EPO-Rho-B</b> was superior to <b>RL-Rho-B</b> and <b>RS-Rho-B</b>, and there was a higher cumulative release amount at pH 6.5. To observe the biocompatibility of compounds with tumor cells, live cell imaging studies were conducted, and it was found that <b>L100-Rho-B</b> and <b>EPO-Rho-B</b> all have good biocompatibility.</p><h3>Graphical abstract</h3><p>pH-responsive acrylic resin complexe\u0000</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"33 1","pages":"57 - 67"},"PeriodicalIF":2.8,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142995004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradable and antioxidant lignin-adsorbed polylactic acid microparticles for eco-friendly primary microparticles 可生物降解和抗氧化的木质素吸附聚乳酸微颗粒,用于生态友好型初级微颗粒
IF 2.4 4区 工程技术
Macromolecular Research Pub Date : 2024-09-13 DOI: 10.1007/s13233-024-00320-3
Yeji Kim, Yewon Jang, Jiho Min, Sung-Kon Kim
{"title":"Biodegradable and antioxidant lignin-adsorbed polylactic acid microparticles for eco-friendly primary microparticles","authors":"Yeji Kim, Yewon Jang, Jiho Min, Sung-Kon Kim","doi":"10.1007/s13233-024-00320-3","DOIUrl":"https://doi.org/10.1007/s13233-024-00320-3","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The severity of environmental and ecological pollution caused by microplastics has become a prominent global concern. In this study, we prepare biodegradable microplastics to replace primary microplastics used as solid raw materials in personal care and cosmetics, synthesizing them using eco-friendly materials, including polylactic acid (PLA, base material), decyl glucoside and lignin (co-surfactants). Employing a solvent evaporation method, uniform spherical microparticles with an average diameter of approximately 5.5 μm are produced. They are potentially harmless to humans and the environment. During the process, lignin adsorbs onto the surface of PLA through non-covalent interactions, forming Lig@PLA microparticles. Additionally, the aqueous solution used in the process can be reused at least four times, presenting both economic and environmental benefits. The Lig@PLA microparticles exhibit approximately 1.3-fold faster biodegradation and 163 times higher antioxidant activity compared to neat PLA due to the presence of lignin on the PLA surface. Consequently, the biodegradable microplastics developed in this study demonstrate potential for use as solid raw materials in personal care products and cosmetics and offer a promising solution to mitigate environmental and ecological pollution by microplastics.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"1 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antimicrobial polymer coatings on surfaces: preparation and activity 表面抗菌聚合物涂层:制备与活性
IF 2.4 4区 工程技术
Macromolecular Research Pub Date : 2024-09-12 DOI: 10.1007/s13233-024-00325-y
Sangwon Ko, Jae-Young Lee, Duckshin Park, Kyunghoon Kim
{"title":"Antimicrobial polymer coatings on surfaces: preparation and activity","authors":"Sangwon Ko, Jae-Young Lee, Duckshin Park, Kyunghoon Kim","doi":"10.1007/s13233-024-00325-y","DOIUrl":"https://doi.org/10.1007/s13233-024-00325-y","url":null,"abstract":"<p>Antimicrobial polymers have been intensively studied as a promising strategy to suppress the growth of microbes and mitigate the transmission of pathogens owing to their distinctive properties, such as high molecular weights, tunable structures, functionality, and polyvalency. Unlike the monomers, the repetitive structure and polyvalency of polymers enable robust interactions with the target surfaces to provide synergetic functionality. Antimicrobial polymers have a great variety of adjustable chain lengths and surface chemistry. Furthermore, their backbones can be functionalized with bioactive substituents to interact with cell membranes, lipids, and proteins. The surface coating methods and the resulting antimicrobial activities depend on polymer characteristics, such as the combination of monomers, synthetic methods, contact time, and substrates. This review focuses on representative antimicrobial polymers, including hydrophilic and ionic polymers, polysaccharides, and copolymers containing amine groups and quaternary ammonium cations (QACs). The surface application strategies and antimicrobial properties for each polymer type are also discussed to provide inspiration for the advanced design of antimicrobial polymers.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3><p>Schematic illustration of antifouling- or microbicidal polymers coated on solid surfaces.</p>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"1 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent achievements in conjugated polymer-based gas sensors by side-chain engineering 通过侧链工程研究共轭聚合物气体传感器的最新成果
IF 2.8 4区 工程技术
Macromolecular Research Pub Date : 2024-09-12 DOI: 10.1007/s13233-024-00318-x
Jinhyun Hwang, Jiho Shin, Wi Hyoung Lee
{"title":"Recent achievements in conjugated polymer-based gas sensors by side-chain engineering","authors":"Jinhyun Hwang,&nbsp;Jiho Shin,&nbsp;Wi Hyoung Lee","doi":"10.1007/s13233-024-00318-x","DOIUrl":"10.1007/s13233-024-00318-x","url":null,"abstract":"<div><p>Recent advancements in conjugated polymer-based gas sensors have highlighted the critical role of side-chain engineering in optimizing organic field-effect transistor (OFET) performance for gas detection. This review provides a comprehensive analysis of how structural modifications of side chains in conjugated polymers affect the electrical properties of OFETs, as well as the sensitivity and selectivity of OFET-based gas sensors. We first explore modifications of alkyl side chains and their impact on the electrical characteristics of conjugated polymers. Then, we discuss how functionalized side chains and additives can significantly enhance sensor performance by improving detection limits and selectivity. Special attention is given to glycol-based side chains, particularly in enhancing NO<sub>2</sub> sensitivity, and the role of alkyl side chain length in tuning gas sensing capabilities. This review aims to elucidate the intricate relationships between side chain modifications and sensor performance, offering insights for the development of advanced OFET-based gas sensors with improved sensitivity and selectivity.</p><h3>Graphical abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"33 1","pages":"1 - 14"},"PeriodicalIF":2.8,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discarded bamboo chopstick cellulose-based fibers for bio-based polybutylene succinate composite reinforcement 用于生物基聚丁二酸丁二醇酯复合材料加固的废弃竹筷纤维素基纤维
IF 2.4 4区 工程技术
Macromolecular Research Pub Date : 2024-09-12 DOI: 10.1007/s13233-024-00324-z
Laongdaw Techawinyutham, Rapeeporn Srisuk, Wiroj Techawinyutham, Sanjay Mavinkere Rangappa, Suchart Siengchin
{"title":"Discarded bamboo chopstick cellulose-based fibers for bio-based polybutylene succinate composite reinforcement","authors":"Laongdaw Techawinyutham, Rapeeporn Srisuk, Wiroj Techawinyutham, Sanjay Mavinkere Rangappa, Suchart Siengchin","doi":"10.1007/s13233-024-00324-z","DOIUrl":"https://doi.org/10.1007/s13233-024-00324-z","url":null,"abstract":"<p>The excessive use of disposable chopsticks generates a significant amount of waste, particularly waste bamboo chopsticks (WBC). This study aims to reduce waste and enhance the value of WBC by extracting bamboo fibers and reinforcing them in a biopolymer matrix. Research on WBC/polymer composites, especially those utilizing extracted bamboo fibers in a biopolymer matrix, is limited. In this research, the bamboo fibers extracted from WBC and bamboo plant are reinforced into a biopolymer called polybutylene succinate (PBS) at varying levels from 0 to 40wt% with increments of 10wt%. The characteristics of composites made from WBC fiber and PBS are analyzed and compared with those of PBS incorporating bamboo fibers obtained directly from bamboo plants. The evaluation focuses on various aspects, including morphology, mechanical strength, thermal properties, and rheological characteristics. The results showed that introducing WBC fibers into the PBS matrix did not significantly compromise the properties or thermal stability of the composites when contrasted with bamboo fibers sourced from bamboo plants and used in PBS composites. The WBC fiber/PBS composites displayed slightly superior mechanical and rheological properties compared to composites incorporating bamboo plant fibers in PBS. The results affirm that bamboo fibers extracted from WBC can effectively reinforce biopolymer composites.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"889 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymer-induced surface wrinkling and imine polymer-based doping of sol–gel zinc oxide in electrolyte-gated transistors 电解质门控晶体管中溶胶凝胶氧化锌的聚合物诱导表面起皱和亚胺聚合物掺杂作用
IF 2.8 4区 工程技术
Macromolecular Research Pub Date : 2024-09-06 DOI: 10.1007/s13233-024-00315-0
Taeheon Kwak, Hyeonjin Yang, Junwoo Chung, Minjae Kim, Seongmin Jung, Gisu Park, Felix Sunjoo Kim
{"title":"Polymer-induced surface wrinkling and imine polymer-based doping of sol–gel zinc oxide in electrolyte-gated transistors","authors":"Taeheon Kwak,&nbsp;Hyeonjin Yang,&nbsp;Junwoo Chung,&nbsp;Minjae Kim,&nbsp;Seongmin Jung,&nbsp;Gisu Park,&nbsp;Felix Sunjoo Kim","doi":"10.1007/s13233-024-00315-0","DOIUrl":"10.1007/s13233-024-00315-0","url":null,"abstract":"<div><p>We report that thin-film morphology of sol–gel zinc oxide (ZnO) and their n-doping characteristics can be controlled using polymers, enabling high-performance n-type electrolyte-gated transistors (EGTs). The wrinkled surface of ZnO films was induced by dissolving an insulating polymer, for example, poly(4-vinyl phenol) (PVPh) and poly(2-hydroxyethyl methacrylate) (PHEMA), into the ZnO precursor solutions, followed by drying at 210 °C. The roughness peaked when the polymer composition was 2.5 wt%. The wavelength (λ) of the wrinkling structure was varied depending on the added polymer (0.49 μm for PVPh and 0.74 μm for PHEMA). For n-doping of the ZnO films, polyethylenimine (PEI) was deposited on the composite films, followed by high-temperature annealing at 500 °C. The constituent polymers (PVPh/PHEMA and PEI) were found decomposed after the heat treatment. The resulting n-doped ZnO films showed excellent electrical characteristics when used as a channel layer in EGTs based on a solid-state ion-gel. The device has a high electron mobility of 63.7 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup> when ZnO channel was made with 1.0% of PVPh in the precursor.</p><h3>Graphical abstract</h3><p>Thin films of sol–gel precursors of ZnO mixed with an insulating polymer form wrinkled surface during drying and become more susceptible to n-doping from a nitrogen-rich polymer by thermal annealing, enabling the mobility enhancement of ZnO in electrolyte-gated transistors.</p>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"33 1","pages":"49 - 55"},"PeriodicalIF":2.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of MIL-101(Fe)-embedded biopolymeric films and their biomedical applications 嵌入 MIL-101(Fe)的生物聚合物薄膜的制作及其生物医学应用
IF 2.8 4区 工程技术
Macromolecular Research Pub Date : 2024-09-03 DOI: 10.1007/s13233-024-00305-2
Banu Kocaaga, Gamze Bagimsiz, Ibrahim Avni Alev, Mehran Aliari Miavaghi, Ahmet Sirkecioglu, Saime Batirel, Fatma Seniha Guner
{"title":"Fabrication of MIL-101(Fe)-embedded biopolymeric films and their biomedical applications","authors":"Banu Kocaaga,&nbsp;Gamze Bagimsiz,&nbsp;Ibrahim Avni Alev,&nbsp;Mehran Aliari Miavaghi,&nbsp;Ahmet Sirkecioglu,&nbsp;Saime Batirel,&nbsp;Fatma Seniha Guner","doi":"10.1007/s13233-024-00305-2","DOIUrl":"10.1007/s13233-024-00305-2","url":null,"abstract":"<div><p>The development of wound-dressing materials with superior therapeutic effects, controlled bioactive agent release, and optimal mechanical properties is crucial in healthcare. This study introduces innovative hydrogel films designed for the sustained release of the local anesthetic drug Procaine (PC), triggered by pH changes. These films are composed of MIL-101(Fe) particles and pectin polymers. MIL-101(Fe) was chosen for its high surface area, stability in aqueous environments, and biocompatibility, ensuring low toxicity to normal cells. MIL-101(Fe)-embedded-pectin hydrogels were synthesized and characterized using Fourier-transformed infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), inductively coupled plasma (ICP) spectrometry, particle size analysis, and goniometry. Rheological analysis assessed the hydrogels’ viscoelastic behavior, and UV-spectrophotometry was utilized for drug loading and release studies. The hydrogels exhibited shear-thinning properties, enhancing shape adaptability and recovery, crucial for wound-dressing applications. Controlled drug release was achieved by maintaining the PC solution’s pH between 8.2 and 9.8 during the drug-loading step. The hydrogel film’s impact on wound healing was evaluated through an in vitro wound healing assay, and cytotoxicity was assessed using a WST-1 cell proliferation assay with human dermal fibroblast cells. Results demonstrated that pectin composites enhance cell viability and support fibroblast cell migration without adverse effects, indicating their potential for effective wound healing applications. This study highlights the potential of MIL-101(Fe)-embedded-pectin hydrogels in advancing wound care technology.</p><h3>Graphical Abstract</h3><p>\u0000MIL-101(Fe)-embedded pectin film as wound dressing</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"32 12","pages":"1211 - 1226"},"PeriodicalIF":2.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13233-024-00305-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142200119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信