{"title":"硫脲基改性聚乙烯醇吸附剂的制备优化","authors":"Zhidong Shang, Cuiling Zhang, Yichen He, Xidan Lin, Huiling Jia, Heyuan Zhang, Changchun Deng","doi":"10.1007/s13233-024-00342-x","DOIUrl":null,"url":null,"abstract":"<div><p>In order to improve the adsorption capacity of poly(vinyl alcohol) (PVA) for heavy metals, a new thiourea-modified poly(vinyl alcohol) adsorbent (TU-SPVA) was prepared using PVA as the raw material, glutaraldehyde as the cross-linking agent and thiourea (TU) as the modifier. The preparation conditions of TU-SPVA were optimized by one-way experiments and response surface methodology (CCD), and the adsorption mechanism was investigated using adsorption kinetics, adsorption isotherm, and adsorption thermodynamics, and the results showed that the optimum conditions for the preparation of TU-SPVA were as follows: pH 6.06, m(TU):m(SPVA) = 6.1:1, and the preparation time of 2.47 h. The maximum removal rate of Cr(VI) by TU-SPVA was 99.37%. The modification reaction in the preparation of TU-SPVA mainly occurred on the hydroxyl group (-OH) of the PVA molecular structure, and the -NH<sub>2</sub> and -C = S functional groups, which can be coordinated with heavy metal ions, were introduced through hydroxyl aldehyde condensation and Schiff reaction. The adsorption of Cr(VI) by TU-SPVA was more consistent with the quasi-secondary kinetic equation and Langmuir model, and the adsorption is a non-spontaneous exothermic process. Combined with the results of scanning electron microscopy and infrared spectroscopy, the adsorption mechanism of TU-SPVA on Cr(VI) is mainly coordination, ion exchange and electrostatic effect, and void filling.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>The graft modification method was used to prepare TU-SPVA, and the optimum preparation conditions of TU-SPVA were investigated, TU-SPVA has a more obvious pore structure than PVA. The adsorption mechanism of TU-SPVA on Cr(VI) was analyzed using the Langmuir et al. adsorption model.</p></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"33 4","pages":"463 - 478"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of the preparation of thiourea-based compounds modifying PVA adsorbents\",\"authors\":\"Zhidong Shang, Cuiling Zhang, Yichen He, Xidan Lin, Huiling Jia, Heyuan Zhang, Changchun Deng\",\"doi\":\"10.1007/s13233-024-00342-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to improve the adsorption capacity of poly(vinyl alcohol) (PVA) for heavy metals, a new thiourea-modified poly(vinyl alcohol) adsorbent (TU-SPVA) was prepared using PVA as the raw material, glutaraldehyde as the cross-linking agent and thiourea (TU) as the modifier. The preparation conditions of TU-SPVA were optimized by one-way experiments and response surface methodology (CCD), and the adsorption mechanism was investigated using adsorption kinetics, adsorption isotherm, and adsorption thermodynamics, and the results showed that the optimum conditions for the preparation of TU-SPVA were as follows: pH 6.06, m(TU):m(SPVA) = 6.1:1, and the preparation time of 2.47 h. The maximum removal rate of Cr(VI) by TU-SPVA was 99.37%. The modification reaction in the preparation of TU-SPVA mainly occurred on the hydroxyl group (-OH) of the PVA molecular structure, and the -NH<sub>2</sub> and -C = S functional groups, which can be coordinated with heavy metal ions, were introduced through hydroxyl aldehyde condensation and Schiff reaction. The adsorption of Cr(VI) by TU-SPVA was more consistent with the quasi-secondary kinetic equation and Langmuir model, and the adsorption is a non-spontaneous exothermic process. Combined with the results of scanning electron microscopy and infrared spectroscopy, the adsorption mechanism of TU-SPVA on Cr(VI) is mainly coordination, ion exchange and electrostatic effect, and void filling.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>The graft modification method was used to prepare TU-SPVA, and the optimum preparation conditions of TU-SPVA were investigated, TU-SPVA has a more obvious pore structure than PVA. The adsorption mechanism of TU-SPVA on Cr(VI) was analyzed using the Langmuir et al. adsorption model.</p></div></div></figure></div></div>\",\"PeriodicalId\":688,\"journal\":{\"name\":\"Macromolecular Research\",\"volume\":\"33 4\",\"pages\":\"463 - 478\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13233-024-00342-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-024-00342-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Optimization of the preparation of thiourea-based compounds modifying PVA adsorbents
In order to improve the adsorption capacity of poly(vinyl alcohol) (PVA) for heavy metals, a new thiourea-modified poly(vinyl alcohol) adsorbent (TU-SPVA) was prepared using PVA as the raw material, glutaraldehyde as the cross-linking agent and thiourea (TU) as the modifier. The preparation conditions of TU-SPVA were optimized by one-way experiments and response surface methodology (CCD), and the adsorption mechanism was investigated using adsorption kinetics, adsorption isotherm, and adsorption thermodynamics, and the results showed that the optimum conditions for the preparation of TU-SPVA were as follows: pH 6.06, m(TU):m(SPVA) = 6.1:1, and the preparation time of 2.47 h. The maximum removal rate of Cr(VI) by TU-SPVA was 99.37%. The modification reaction in the preparation of TU-SPVA mainly occurred on the hydroxyl group (-OH) of the PVA molecular structure, and the -NH2 and -C = S functional groups, which can be coordinated with heavy metal ions, were introduced through hydroxyl aldehyde condensation and Schiff reaction. The adsorption of Cr(VI) by TU-SPVA was more consistent with the quasi-secondary kinetic equation and Langmuir model, and the adsorption is a non-spontaneous exothermic process. Combined with the results of scanning electron microscopy and infrared spectroscopy, the adsorption mechanism of TU-SPVA on Cr(VI) is mainly coordination, ion exchange and electrostatic effect, and void filling.
Graphical abstract
The graft modification method was used to prepare TU-SPVA, and the optimum preparation conditions of TU-SPVA were investigated, TU-SPVA has a more obvious pore structure than PVA. The adsorption mechanism of TU-SPVA on Cr(VI) was analyzed using the Langmuir et al. adsorption model.
期刊介绍:
Original research on all aspects of polymer science, engineering and technology, including nanotechnology
Presents original research articles on all aspects of polymer science, engineering and technology
Coverage extends to such topics as nanotechnology, biotechnology and information technology
The English-language journal of the Polymer Society of Korea
Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.