生物电子学用聚苯二呋喃二酮的研究:高导电性、电稳定性和生物相容性

IF 2.8 4区 工程技术 Q2 POLYMER SCIENCE
Seungju Kang, Eun Chae Kim, Hyung Woo Kim, Boseok Kang
{"title":"生物电子学用聚苯二呋喃二酮的研究:高导电性、电稳定性和生物相容性","authors":"Seungju Kang,&nbsp;Eun Chae Kim,&nbsp;Hyung Woo Kim,&nbsp;Boseok Kang","doi":"10.1007/s13233-025-00385-8","DOIUrl":null,"url":null,"abstract":"<div><p>Poly(benzodifurandione) (PBFDO), a recently developed n-type conductive polymer, shows promise as an alternative material for bioelectronics, particularly in neural probes. This study systematically evaluates the electrical, mechanical, and biocompatibility properties of PBFDO and compares its performance with the widely used material for bioelectronics; poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The intrinsic doping mechanism of PBFDO provides high electrical conductivity (up to 2000 S/cm) without requiring external dopants, enhancing its environmental stability and simplifying fabrication. Surface characterizations revealed uniform coatings and hydrophilic properties suitable for bioelectronics. Notably, PBFDO demonstrated exceptional electrical stability in phosphate-buffered saline (PBS), retaining 97% of its initial conductivity after three days. Biocompatibility assays using NIH-3T3 fibroblast cells showed no cytotoxic effects, with cell proliferation rates comparable to bare glass and crosslinked PEDOT:PSS. These findings establish PBFDO as a robust and biocompatible material for next-generation bioelectronic devices, including neural probes, biosensors, and implantable electrodes.</p><h3>Graphical abstract</h3><p>We highlight PBFDO as a promising biocompatible electrode material for neural probes. PBFDO demonstrates intrinsically high conductivity, exceptional stability in aqueous environments, and excellent biocompatibility, all without the need for modification or post-treatment, outperforming PEDOT:PSS. These properties make PBFDO an ideal candidate for use in neural probes, offering superior material performance.</p>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"33 3","pages":"377 - 383"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13233-025-00385-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Investigation of poly(benzodifurandione) for bioelectronics: high conductivity, electrical stability, and biocompatibility\",\"authors\":\"Seungju Kang,&nbsp;Eun Chae Kim,&nbsp;Hyung Woo Kim,&nbsp;Boseok Kang\",\"doi\":\"10.1007/s13233-025-00385-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Poly(benzodifurandione) (PBFDO), a recently developed n-type conductive polymer, shows promise as an alternative material for bioelectronics, particularly in neural probes. This study systematically evaluates the electrical, mechanical, and biocompatibility properties of PBFDO and compares its performance with the widely used material for bioelectronics; poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The intrinsic doping mechanism of PBFDO provides high electrical conductivity (up to 2000 S/cm) without requiring external dopants, enhancing its environmental stability and simplifying fabrication. Surface characterizations revealed uniform coatings and hydrophilic properties suitable for bioelectronics. Notably, PBFDO demonstrated exceptional electrical stability in phosphate-buffered saline (PBS), retaining 97% of its initial conductivity after three days. Biocompatibility assays using NIH-3T3 fibroblast cells showed no cytotoxic effects, with cell proliferation rates comparable to bare glass and crosslinked PEDOT:PSS. These findings establish PBFDO as a robust and biocompatible material for next-generation bioelectronic devices, including neural probes, biosensors, and implantable electrodes.</p><h3>Graphical abstract</h3><p>We highlight PBFDO as a promising biocompatible electrode material for neural probes. PBFDO demonstrates intrinsically high conductivity, exceptional stability in aqueous environments, and excellent biocompatibility, all without the need for modification or post-treatment, outperforming PEDOT:PSS. These properties make PBFDO an ideal candidate for use in neural probes, offering superior material performance.</p>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":688,\"journal\":{\"name\":\"Macromolecular Research\",\"volume\":\"33 3\",\"pages\":\"377 - 383\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13233-025-00385-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13233-025-00385-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13233-025-00385-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

聚(苯二呋喃二酮)(pbdo)是最近开发的n型导电聚合物,作为生物电子学的替代材料,特别是在神经探针方面,前景广阔。本研究系统地评价了pbdo的电学、力学和生物相容性,并将其与广泛应用于生物电子学的材料进行了比较;聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)。pbdo的内在掺杂机制在不需要外部掺杂的情况下提供高导电性(高达2000 S/cm),增强了其环境稳定性并简化了制造过程。表面表征显示了适合生物电子学的均匀涂层和亲水性。值得注意的是,pbdo在磷酸盐缓冲盐水(PBS)中表现出优异的电稳定性,三天后仍能保持97%的初始导电性。使用NIH-3T3成纤维细胞进行生物相容性试验,结果显示无细胞毒性作用,细胞增殖率与裸玻璃和交联PEDOT:PSS相当。这些发现确立了pbdo作为下一代生物电子器件的坚固和生物相容性材料,包括神经探针、生物传感器和植入式电极。我们强调pbdo是一种很有前途的神经探针生物相容性电极材料。pbdo具有固有的高导电性、优异的水环境稳定性和出色的生物相容性,所有这些都不需要修饰或后处理,优于PEDOT:PSS。这些特性使pbdo成为神经探针的理想候选者,提供优越的材料性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of poly(benzodifurandione) for bioelectronics: high conductivity, electrical stability, and biocompatibility

Poly(benzodifurandione) (PBFDO), a recently developed n-type conductive polymer, shows promise as an alternative material for bioelectronics, particularly in neural probes. This study systematically evaluates the electrical, mechanical, and biocompatibility properties of PBFDO and compares its performance with the widely used material for bioelectronics; poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The intrinsic doping mechanism of PBFDO provides high electrical conductivity (up to 2000 S/cm) without requiring external dopants, enhancing its environmental stability and simplifying fabrication. Surface characterizations revealed uniform coatings and hydrophilic properties suitable for bioelectronics. Notably, PBFDO demonstrated exceptional electrical stability in phosphate-buffered saline (PBS), retaining 97% of its initial conductivity after three days. Biocompatibility assays using NIH-3T3 fibroblast cells showed no cytotoxic effects, with cell proliferation rates comparable to bare glass and crosslinked PEDOT:PSS. These findings establish PBFDO as a robust and biocompatible material for next-generation bioelectronic devices, including neural probes, biosensors, and implantable electrodes.

Graphical abstract

We highlight PBFDO as a promising biocompatible electrode material for neural probes. PBFDO demonstrates intrinsically high conductivity, exceptional stability in aqueous environments, and excellent biocompatibility, all without the need for modification or post-treatment, outperforming PEDOT:PSS. These properties make PBFDO an ideal candidate for use in neural probes, offering superior material performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Research
Macromolecular Research 工程技术-高分子科学
CiteScore
4.70
自引率
8.30%
发文量
100
审稿时长
1.3 months
期刊介绍: Original research on all aspects of polymer science, engineering and technology, including nanotechnology Presents original research articles on all aspects of polymer science, engineering and technology Coverage extends to such topics as nanotechnology, biotechnology and information technology The English-language journal of the Polymer Society of Korea Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信