Biomaterials Science最新文献

筛选
英文 中文
Recent advances in carrier-free natural small molecule self-assembly for drug delivery. 用于给药的无载体天然小分子自组装的最新进展。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2024-11-08 DOI: 10.1039/d4bm01153h
Yehua Sun, Changyang Lei, Renzhong Qiao, Chao Li
{"title":"Recent advances in carrier-free natural small molecule self-assembly for drug delivery.","authors":"Yehua Sun, Changyang Lei, Renzhong Qiao, Chao Li","doi":"10.1039/d4bm01153h","DOIUrl":"https://doi.org/10.1039/d4bm01153h","url":null,"abstract":"<p><p>Natural small-molecule drugs have been used for thousands of years for the prevention and treatment of human diseases. Most of the natural products available on the market have been modified into various polymer materials for improving the solubility, stability, and targeted delivery of drugs. However, these nanomedicines formed based on polymer carriers would produce severe problems such as systemic toxicity and kidney metabolic stress. In contrast, the carrier-free nanomedicines formed by their self-assembly in water have inherent advantages such as low toxicity, good biocompatibility, and biodegradability. This review summarizes the assembly process and application of natural small-molecule products, which are mainly driven by multiple non-covalent interactions, and includes single-molecule assembly, bimolecular assembly, drug-modified assembly, and organogels. Meanwhile, the molecular mechanism involved in different self-assembly processes is also discussed. Self-assembly simulation and structural modification of natural small-molecule products or traditional Chinese medicine molecules using molecular dynamics simulation and computer-assisted methods are proposed, which will lead to the discovery of more carrier-free nanomedicine drug delivery systems. Overall, this review provides an important understanding and strategy to study single-molecule and multi-molecule carrier-free nanomedicines.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Use of UMFNPs/Ce6@MBs in multimodal imaging-guided sono-photodynamic combination therapy for hepatocellular carcinoma. 将 UMFNPs/Ce6@MBs 用于肝细胞癌的多模态成像引导声光动力联合疗法。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2024-11-07 DOI: 10.1039/d4bm00613e
Lijun Xing, Xiaoting Yang, Jianhua Bai, Chunting Zhong, Jing Cai, Qing Dan, Yiran Ji, Bingxuan Xu, Keyan Yu, Xiaoyu Chen, Yulong Qi, Li Li, Yun Chen, Xintao Shuai, Guanxun Cheng, Li Liu, Tingting Zheng
{"title":"Use of UMFNPs/Ce6@MBs in multimodal imaging-guided sono-photodynamic combination therapy for hepatocellular carcinoma.","authors":"Lijun Xing, Xiaoting Yang, Jianhua Bai, Chunting Zhong, Jing Cai, Qing Dan, Yiran Ji, Bingxuan Xu, Keyan Yu, Xiaoyu Chen, Yulong Qi, Li Li, Yun Chen, Xintao Shuai, Guanxun Cheng, Li Liu, Tingting Zheng","doi":"10.1039/d4bm00613e","DOIUrl":"10.1039/d4bm00613e","url":null,"abstract":"<p><p>Early diagnosis of liver cancer and appropriate treatment options are critical for obtaining a good prognosis. However, due to technical limitations, it is difficult to make an early and accurate diagnosis of liver cancer, and the traditional imaging model is relatively simple. Therefore, we synthesized multifunctional diagnostic/therapeutic nanoparticles, UMFNPs/Ce6@MBs, loaded with ultra-small manganese ferrite nanoparticles (UMFNPs) and chlorin e6 (Ce6). This nanoplatform can take full advantage of hypoxia, acidic pH (acidosis) and increased levels of reactive oxygen species (<i>e.g.</i> H<sub>2</sub>O<sub>2</sub>) in the tumor microenvironment (TME). Specific imaging and drug release can also enhance tumor therapy by modulating the hypoxic state of the TME to achieve the combined effect of sonodynamic therapy and photodynamic therapy (SPDT). In addition, the prepared UMFNPs/Ce6@MBs have H<sub>2</sub>O<sub>2</sub> and pH-sensitive biodegradability and can release UMFNPs and photosensitizer Ce6 in the TME while producing O<sub>2</sub> and Mn<sup>2+</sup>. The obtained Mn<sup>2+</sup> ion nanoparticles can be used for <i>T</i><sub>1</sub> magnetic resonance imaging of tumor-bearing mice, and the released Ce6 can provide fluorescence imaging function at the same time. Because UMFNPs/Ce6@MB ultrasonic microbubbles show good ultrasonic imaging results, UMFNPs/Ce6@MBs can simultaneously provide multi-modal imaging functions for magnetic resonance imaging (MRI), ultrasound and fluorescence imaging. In conclusion, UMFNPs/Ce6@MBs realize the synergistic treatment of SDT and PDT under multi-mode near-infrared fluorescence imaging and CEUS monitoring, demonstrating its great potential in tumor precision medicine.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A stimulus responsive microneedle-based drug delivery system for cancer therapy. 用于癌症治疗的刺激反应微针给药系统。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2024-11-06 DOI: 10.1039/d4bm00741g
Hongyu Tang, Xueqing Cheng, Ling Liang, Bo Zhi Chen, Chaoyong Liu, Yushu Wang
{"title":"A stimulus responsive microneedle-based drug delivery system for cancer therapy.","authors":"Hongyu Tang, Xueqing Cheng, Ling Liang, Bo Zhi Chen, Chaoyong Liu, Yushu Wang","doi":"10.1039/d4bm00741g","DOIUrl":"https://doi.org/10.1039/d4bm00741g","url":null,"abstract":"<p><p>The intricate nature of the tumor microenvironment (TME) results in the inefficient delivery of anticancer drugs within tumor tissues, significantly compromising the therapeutic effect of cancer treatment. To address this issue, transdermal drug delivery microneedles (MNs) with high mechanical strength have emerged. Such MNs penetrate the skin barrier, enabling efficient drug delivery to tumor tissues. This approach enhances drug bioavailability, while also mitigating concerns such as liver and kidney toxicity associated with intravenous and oral drug administration. Notably, stimulus responsive MNs designed for drug delivery have the capacity to respond to various biological signals and pathological changes. This adaptability enables them to exert therapeutic effects within the TME, exploiting biochemical variations and tailoring treatment strategies to suit tumor characteristics. The present review surveys recent advancements in responsive MN systems. This comprehensive analysis serves as a valuable reference for the prospective application of smart MN drug delivery systems in cancer therapy.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MicBall800-coated metal clip as a novel fluorescent marker for image-guided laparoscopic surgery. MicBall800 涂层金属夹作为图像引导腹腔镜手术的新型荧光标记。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2024-11-05 DOI: 10.1039/d4bm01252f
Hyoung-Jun Kim, Hong Man Yoon, Youngjeon Lee, Kyung Seob Lim, Jung Bae Seong, Sung-Jae Park, Yongdoo Choi
{"title":"MicBall800-coated metal clip as a novel fluorescent marker for image-guided laparoscopic surgery.","authors":"Hyoung-Jun Kim, Hong Man Yoon, Youngjeon Lee, Kyung Seob Lim, Jung Bae Seong, Sung-Jae Park, Yongdoo Choi","doi":"10.1039/d4bm01252f","DOIUrl":"https://doi.org/10.1039/d4bm01252f","url":null,"abstract":"<p><p>Accurate tumor localization is crucial for the success of minimally invasive surgery, as it minimizes the resection of normal tissues surrounding tumors. Traditional methods for marking gastrointestinal (GI) tumors, such as ink tattooing, intraoperative gastroscopy or colonoscopy, and placement of metal clips, have major drawbacks in their application in laparoscopic surgery. Therefore, the development of safe and easy-to-operate marking methods for accurate and real-time detection of GI tumors during laparoscopic surgery remains an ongoing challenge. Here, we propose a new fluorescent metal clip (MicBall800 clip) for noninvasive and precise fluorescence marking of GI tumors. First, we prepared a poly(methyl methacrylate) microball with small, multiple, and separated pores in its internal structure, and near-infrared fluorescence dye (IRDye800CW) and human serum albumin complex were loaded into the pores. This near-infrared-dye-loaded poly(methyl methacrylate) microball (MicBall800) was then coated onto the surface of the metal clips to produce a highly fluorescent MicBall800 clip. Safety and biocompatibility tests of the MicBall800 clip were conducted by the Korea Testing Certification Institute. The MicBall800 clip was evaluated <i>in vivo</i> using a porcine model. The MicBall800 clip passed safety and biocompatibility tests. The MicBall800 clip could be easily marked at the target sites without causing any side effects and was detected in real time during the laparoscopic operation. The data obtained from the safety and biocompatibility tests and the <i>in vivo</i> animal study indicate that the MicBall800 clip can be an important advancement in minimally invasive and precision surgery for GI cancers.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic nanoparticles for use in bioimaging. 用于生物成像的磁性纳米粒子。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2024-11-05 DOI: 10.1039/d4bm01145g
Guo-Feng Luo, Xian-Zheng Zhang
{"title":"Magnetic nanoparticles for use in bioimaging.","authors":"Guo-Feng Luo, Xian-Zheng Zhang","doi":"10.1039/d4bm01145g","DOIUrl":"https://doi.org/10.1039/d4bm01145g","url":null,"abstract":"<p><p>Magnetic nanoparticles (MNPs) are well-known contrast agents for use in medical imageology, facilitating disease detection <i>via</i> magnetic resonance imaging (MRI). With the development of nanotechnology, various MNPs have been exploited with strong contrast enhancement effects as well as multiple functions to conquer challenges related to the low detection accuracy and sensitivity. In this review, the typical characteristics and types of MNPs are outlined, and the design and fabrication of MNP-based MRI contrast agents as well as multi-mode imaging agents are also introduced by discussing the representative studies. In the pursuit of performance-enhanced MNPs, novel MNPs are expected to be developed as the next generation of contrast agents for precise bioimaging applications in a broad spectrum of fields.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-targeted smart polyester nanoparticles for simultaneous Delivery of photothermal and chemotherapeutic agents for efficient treatment of HCC. 自靶向智能聚酯纳米粒子可同时释放光热和化疗药物,有效治疗 HCC。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2024-11-04 DOI: 10.1039/d4bm01120a
Sajid Iqbal, Xiaoxiao Chen, Muhammad Sohail, Fazong Wu, Shiji Fang, Ji Ma, Haiyong Wang, Zhongwei Zhao, Gaofeng Shu, Minjiang Chen, Yong-Zhong Du, Jiansong Ji
{"title":"Self-targeted smart polyester nanoparticles for simultaneous Delivery of photothermal and chemotherapeutic agents for efficient treatment of HCC.","authors":"Sajid Iqbal, Xiaoxiao Chen, Muhammad Sohail, Fazong Wu, Shiji Fang, Ji Ma, Haiyong Wang, Zhongwei Zhao, Gaofeng Shu, Minjiang Chen, Yong-Zhong Du, Jiansong Ji","doi":"10.1039/d4bm01120a","DOIUrl":"https://doi.org/10.1039/d4bm01120a","url":null,"abstract":"<p><p>Advances in nanotechnology offer promising strategies to overcome the limitations of single-drug therapies in hepatocellular carcinoma (HCC) and other cancers such as multidrug resistance and variable drug tolerances. This study proposes a targeted nanoparticle system based on a poly(β-aminoester) (PβAE) core and a hyaluronic acid (HA) shell, designed for the codelivery of doxorubicin (DOX) and indocyanine green (ICG) to effectively treat HCC. These nanoparticles demonstrated remarkable physicochemical and colloidal stability, pH- and temperature-responsive release, enhanced cellular uptake, and drug retention within tumors. Upon near-infrared (NIR) irradiation, the photothermal conversion of ICG elevated local tumor temperatures up to 53.6 °C, enhancing apoptotic cell death significantly compared to chemotherapy alone (<i>p</i> < 0.05). Furthermore, the dual delivery system significantly enhanced therapeutic efficacy, as evidenced by a marked decrease in tumor growth <i>in vivo</i> compared to controls (<i>p</i> < 0.01). These findings illustrate that the HA/PβAE/DOX/ICG nanoparticles are not only able to precisely target tumor cells but also overcome the limitations associated with traditional chemotherapies and photothermal treatments, suggesting a promising avenue for clinical translation of cancer therapy.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transtympanic delivery of V2O5 nanowires with a tympanic-membrane penetrating peptide. 用一种鼓膜穿透肽经鼓膜输送 V2O5 纳米线。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2024-11-04 DOI: 10.1039/d4bm00983e
Sophie S Liu, Jiayan Lang, Shuxian Wen, Pengyu Chen, Haonian Shu, Simon Shindler, Wenjing Tang, Xiaojing Ma, Max D Serota, Rong Yang
{"title":"Transtympanic delivery of V<sub>2</sub>O<sub>5</sub> nanowires with a tympanic-membrane penetrating peptide.","authors":"Sophie S Liu, Jiayan Lang, Shuxian Wen, Pengyu Chen, Haonian Shu, Simon Shindler, Wenjing Tang, Xiaojing Ma, Max D Serota, Rong Yang","doi":"10.1039/d4bm00983e","DOIUrl":"10.1039/d4bm00983e","url":null,"abstract":"<p><p>Otitis media is a prevalent pediatric condition. Local delivery of antimicrobial agents to treat otitis media is hindered by the low permeability of the stratum corneum layer in the tympanic membrane. While nanozymes, often inorganic nanoparticles, have been developed to cure otitis media in an antibiotic-free manner in a chinchilla animal model, the tympanic membrane creates an impenetrable barrier that prevents the local and non-invasive delivery of nanozymes. Here, we use a newly developed vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) nanowire as an example, which catalyzes the metabolic products of an otitis media pathogen (<i>Streptococcus pneumoniae</i>) into antiseptics, to explore the transtympanic delivery strategies for antimicrobial nanozymes. V<sub>2</sub>O<sub>5</sub> nanowires with smaller dimensions (<300 nm in length) were synthesized by optimizing the synthesis conditions. To enhance penetrations across intact tympanic membranes, the nanowire was mixed or surface-modified with a trans-tympanic peptide, TMT3. The peptide-modified nanowires were characterized for their physical properties, catalytic activities, and antimicrobial activities. The cytotoxicity profile and permeation across <i>ex vivo</i> tympanic membrane samples were analyzed for the mixed and surface-modified nanozyme formulations.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533110/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifaceted role of nanocomposite hydrogels in diabetic wound healing: enhanced biomedical applications and detailed molecular mechanisms. 纳米复合水凝胶在糖尿病伤口愈合中的多方面作用:增强的生物医学应用和详细的分子机制。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2024-11-04 DOI: 10.1039/d4bm01088d
Gege Xiong, Qiwei Chen, Qiuyu Wang, Xiaoxue Wang, Yaomu Xiao, Liuli Jin, Kaichong Yan, Xueyang Zhang, Fei Hu
{"title":"Multifaceted role of nanocomposite hydrogels in diabetic wound healing: enhanced biomedical applications and detailed molecular mechanisms.","authors":"Gege Xiong, Qiwei Chen, Qiuyu Wang, Xiaoxue Wang, Yaomu Xiao, Liuli Jin, Kaichong Yan, Xueyang Zhang, Fei Hu","doi":"10.1039/d4bm01088d","DOIUrl":"https://doi.org/10.1039/d4bm01088d","url":null,"abstract":"<p><p>The complex microenvironment of diabetic wounds, which is characterized by persistent hyperglycemia, excessive inflammatory responses, and hypoxic conditions, significantly impedes the efficacy of traditional hydrogels. Nanocomposite hydrogels, which combine the high-water content and biocompatibility of hydrogels with the unique functionalities of nanomaterials, offer a promising solution. These hydrogels exhibit enhanced antibacterial, antioxidant, and drug-release properties. Incorporating nanomaterials increases the mechanical strength and bioactivity of hydrogels, allowing for dynamic regulation of the wound microenvironment and promoting cell migration, proliferation, and angiogenesis, thereby accelerating wound healing. This review provides a comprehensive overview of the latest advances in nanocomposite hydrogels for diabetic wound treatment and discusses their advantages and molecular mechanisms at various healing stages. The study aims to provide a theoretical foundation and practical guidance for future research and clinical applications. Furthermore, it highlights the challenges related to the mechanical durability, antimicrobial performance, resistance issues, and interactions with the cellular environments of these hydrogels. Future directions include optimizing smart drug delivery systems and personalized medical approaches to enhance the clinical applicability of nanocomposite hydrogels.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid-based nanocarriers: an attractive approach for rheumatoid arthritis management. 基于脂质的纳米载体:治疗类风湿性关节炎的一种极具吸引力的方法。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2024-11-01 DOI: 10.1039/d4bm01058b
Moataz B Zewail, Ahmed S Doghish, Hussein M El-Husseiny, Eman A Mady, Osama A Mohammed, Abdullah M M Elbadry, Amir S Elbokhomy, Abdelmenem Bhnsawy, Walaa A El-Dakroury
{"title":"Lipid-based nanocarriers: an attractive approach for rheumatoid arthritis management.","authors":"Moataz B Zewail, Ahmed S Doghish, Hussein M El-Husseiny, Eman A Mady, Osama A Mohammed, Abdullah M M Elbadry, Amir S Elbokhomy, Abdelmenem Bhnsawy, Walaa A El-Dakroury","doi":"10.1039/d4bm01058b","DOIUrl":"https://doi.org/10.1039/d4bm01058b","url":null,"abstract":"<p><p>Lipid nanoparticles (LNPs) have emerged as transformative tools in modern drug delivery, offering unparalleled potential in enhancing the efficacy and safety of various therapeutics. In the context of rheumatoid arthritis (RA), a disabling autoimmune disorder characterized by chronic inflammation, joint damage, and limited patient mobility, LNPs hold significant promise for revolutionizing treatment strategies. LNPs offer several advantages over traditional drug delivery systems, including improved pharmacokinetics, enhanced tissue penetration, and reduced systemic toxicity. This article concisely summarizes the pathogenesis of RA, its associated risk factors, and therapeutic techniques and their challenges. Additionally, it highlights the noteworthy advancements made in managing RA through LNPs, including liposomes, niosomes, bilosomes, cubosomes, spanlastics, ethosomes, solid lipid nanoparticles, lipid micelles, lipid nanocapsules, nanostructured lipid carriers, <i>etc</i>. It also delves into the specific functional attributes of these nanocarrier systems, focusing on their role in treating and monitoring RA.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in nanogels for drug delivery and biomedical applications 纳米凝胶在药物输送和生物医学应用方面的最新进展。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2024-11-01 DOI: 10.1039/D4BM00224E
Arti Vashist, Gabriela Perez Alvarez, Vianessa Andion Camargo, Andrea D. Raymond, Adriana Yndart Arias, Nagesh Kolishetti, Atul Vashist, Pandiaraj Manickam, Saurabh Aggarwal and Madhavan Nair
{"title":"Recent advances in nanogels for drug delivery and biomedical applications","authors":"Arti Vashist, Gabriela Perez Alvarez, Vianessa Andion Camargo, Andrea D. Raymond, Adriana Yndart Arias, Nagesh Kolishetti, Atul Vashist, Pandiaraj Manickam, Saurabh Aggarwal and Madhavan Nair","doi":"10.1039/D4BM00224E","DOIUrl":"10.1039/D4BM00224E","url":null,"abstract":"<p >Nanotechnology has shown great promise for researchers to develop efficient nanocarriers for better therapy, imaging, and sustained release of drugs. The existing treatments are accompanied by serious toxicity limitations, leading to severe side effects, multiple drug resistance, and off-target activity. In this regard, nanogels have garnered significant attention for their multi-functional role combining advanced therapeutics with imaging in a single platform. Nanogels can be functionalized to target specific tissues which can improve the efficiency of drug delivery and other challenges associated with the existing nanocarriers. Translation of nanogel technology requires more exploration towards stability and enhanced efficiency. In this review, we present the advances and challenges related to nanogels for cancer therapy, ophthalmology, neurological disorders, tuberculosis, wound healing, and anti-viral applications. A perspective on recent research trends of nanogels for translation to clinics is also discussed.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 23","pages":" 6006-6018"},"PeriodicalIF":5.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信