Biomaterials Science最新文献

筛选
英文 中文
A novel therapeutic strategy utilizing EpCAM aptamer-conjugated gemcitabine for targeting bladder cancer and cancer stem cells† 利用EpCAM适体偶联吉西他滨靶向膀胱癌和癌症干细胞的新治疗策略
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2025-01-10 DOI: 10.1039/D4BM01471E
Jiahao Liu, Long Wang, Yongbo Peng, Shuyang Long, Hongliang Zeng, Minhua Deng, Wei Xiang, Biao Liu, Xing Hu, Xuewen Liu, Jianfei Xie, Weibin Hou, Jin Tang and Jianye Liu
{"title":"A novel therapeutic strategy utilizing EpCAM aptamer-conjugated gemcitabine for targeting bladder cancer and cancer stem cells†","authors":"Jiahao Liu, Long Wang, Yongbo Peng, Shuyang Long, Hongliang Zeng, Minhua Deng, Wei Xiang, Biao Liu, Xing Hu, Xuewen Liu, Jianfei Xie, Weibin Hou, Jin Tang and Jianye Liu","doi":"10.1039/D4BM01471E","DOIUrl":"10.1039/D4BM01471E","url":null,"abstract":"<p >Gemcitabine (GEM) is a first line chemotherapy drug for bladder cancer (BCa). GEM's lack of specificity has led to disadvantages, resulting in low efficiency, especially when combined with the targeted treatment of BCa stem cells (CSCs), which is considered the cause of BCa recurrence and progression. To enhance the anti-cancer effect and reduce the side effects of GEM targeting of BCa cells/CSCs, an aptamer drug conjugate (ApDC) targeted delivery system was used to improve the efficiency of GEM in BCa therapy using EpCAM aptamer-GEM conjugates based on the epithelial cell adhesion molecule (EpCAM), which is highly expressed on the cell membrane of BCa cells/CSCs. We designed and synthesized EpCAM aptamer gemcitabine conjugates (EpCAM-GEMs, one aptamer carried three GEMs). The targeting effect of EpCAM-GEMs was examined in a xenograft model using an <em>in vivo</em> imaging system. To evaluate the antitumor activity and mechanism of EpCAM-GEMs, Cell Counting Kit-8, apoptosis and colony formation assays; BCa CSC xenotransplantation; xenotransplantation of subcutaneous tumors; a lung metastasis model; an <em>in situ</em> model; and biosafety assessment were used <em>in vitro</em> and <em>in vivo</em>. EpCAM is highly expressed on the surface of BCa cells/CSCs. EpCAM-GEMs were automatically synthesized using a DNA synthesizer, were stable in serum, and selectively delivered GEM to kill BCa cells/CSCs. EpCAM-GEMs entered BCa cells <em>via</em> macropinocytosis, released GEM to inhibit DNA synthesis, and degraded all BCa cells under the action of a BCa cell intracellular phosphatase; however, they did not kill normal cells because of their low EpCAM expression. EpCAM-GEMs inhibited BCa growth and metastasis in three bladder tumor models, with good biosafety. These results demonstrated the targeted anti-tumor efficiency and good biosafety of EpCAM-GEMs in BCa treatment, which will provide a new therapeutic strategy in BCa biomarker targeted therapy.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 6","pages":" 1398-1413"},"PeriodicalIF":5.8,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating microfluidics, hydrogels, and 3D bioprinting for personalized vessel-on-a-chip platforms 集成微流体,水凝胶和3D生物打印的个性化血管芯片平台。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2025-01-09 DOI: 10.1039/D4BM01354A
San Seint Seint Aye, Zhongqi Fang, Mike C. L. Wu, Khoon S. Lim and Lining Arnold Ju
{"title":"Integrating microfluidics, hydrogels, and 3D bioprinting for personalized vessel-on-a-chip platforms","authors":"San Seint Seint Aye, Zhongqi Fang, Mike C. L. Wu, Khoon S. Lim and Lining Arnold Ju","doi":"10.1039/D4BM01354A","DOIUrl":"10.1039/D4BM01354A","url":null,"abstract":"<p >Thrombosis, a major cause of morbidity and mortality worldwide, presents a complex challenge in cardiovascular medicine due to the intricacy of clotting mechanisms in living organisms. Traditional research approaches, including clinical studies and animal models, often yield conflicting results due to the inability to control variables in these complex systems, highlighting the need for more precise investigative tools. This review explores the evolution of <em>in vitro</em> thrombosis models, from conventional polydimethylsiloxane (PDMS)-based microfluidic devices to advanced hydrogel-based systems and cutting-edge 3D bioprinted vascular constructs. We discuss how these emerging technologies, particularly vessel-on-a-chip platforms, are enabling researchers to control previously unmanageable factors, thereby offering unprecedented opportunities to pinpoint specific clotting mechanisms. While PDMS-based devices offer optical transparency and fabrication ease, their inherent limitations, including non-physiological rigidity and surface properties, have driven the development of hydrogel-based systems that better mimic the extracellular matrix of blood vessels. The integration of microfluidics with biomimetic materials and tissue engineering approaches has led to the development of sophisticated models capable of simulating patient-specific vascular geometries, flow dynamics, and cellular interactions under highly controlled conditions. The advent of 3D bioprinting further enables the creation of complex, multi-layered vascular structures with precise spatial control over geometry and cellular composition. Despite significant progress, challenges remain in achieving long-term stability, incorporating immune components, and translating these models to clinical applications. By providing a comprehensive overview of current advancements and future prospects, this review aims to stimulate further innovation in thrombosis research and accelerate the development of more effective, personalized approaches to thrombosis prevention and treatment.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 5","pages":" 1131-1160"},"PeriodicalIF":5.8,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of human intestinal mucus in the prevention of microplastic uptake and cell damage† 人体肠道粘液在预防微塑料摄取和细胞损伤中的作用。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2025-01-08 DOI: 10.1039/D4BM01574F
Ellen W. van Wijngaarden, Sandra L. Arias, Matthew Rhee, Meredith N. Silberstein and Ilana L. Brito
{"title":"The role of human intestinal mucus in the prevention of microplastic uptake and cell damage†","authors":"Ellen W. van Wijngaarden, Sandra L. Arias, Matthew Rhee, Meredith N. Silberstein and Ilana L. Brito","doi":"10.1039/D4BM01574F","DOIUrl":"10.1039/D4BM01574F","url":null,"abstract":"<p >An increase in plastic waste and its release into the environment has led to health concerns over microplastics (MPs) in the environment. The intestinal mucosal layer is a key defense mechanism against ingested MPs, preventing the migration of particles to other parts of the body. MP migration through intestinal mucus is challenging to study due to difficulties in obtaining intact mucus layers for testing and numerous formulations, shapes, and sizes of microplastics. Previous studies have primarily used mucus from animals, hydrogel models, and mucus samples from other parts of the body as substitutes. This study examines how different MP compositions, sizes (40–500 nm), and surface functionalizations alter MP migration through human intestinal mucus; how the mucus layer protects cells from MP uptake, toxicity, and inflammation; and how the intestinal mucus prevents the migration of other environmental toxins <em>via</em> MP particles. The presence of a mucus layer also provides critical protection against cytotoxicity, reactive oxygen species production, and uptake for all particles tested, although certain functionalizations, such as streptavidin, are particularly harmful to cells with high toxicity and inflammation. Understanding the properties that assist of impede the diffusion of MPs through mucus is relevant to the overall bioaccumulation and health effects of MPs as well as drug delivery purposes.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 4","pages":" 1010-1020"},"PeriodicalIF":5.8,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/bm/d4bm01574f?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biofabricated tissue model for determining biocompatibility of metallic coatings† 测定金属涂层生物相容性的生物制造组织模型。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2025-01-08 DOI: 10.1039/D4BM01335B
Taha Cagri Senocak, Pavan Kumar Reddy Gudeti, Joanna Żur-Pińska and Małgorzata Katarzyna Włodarczyk-Biegun
{"title":"Biofabricated tissue model for determining biocompatibility of metallic coatings†","authors":"Taha Cagri Senocak, Pavan Kumar Reddy Gudeti, Joanna Żur-Pińska and Małgorzata Katarzyna Włodarczyk-Biegun","doi":"10.1039/D4BM01335B","DOIUrl":"10.1039/D4BM01335B","url":null,"abstract":"<p >Metallic biomaterials are extensively used in orthopedics and dentistry, either as implants or coatings. In both cases, metal ions come into contact with surrounding tissues causing a particular cell response. Here, we present a biofabricated <em>in vitro</em> tissue model, consisting of a hydrogel reinforced with a melt electrowritten mesh, to study the effects of bound and released metal ions on surrounding cells embedded in a hydrogel matrix. We evaluate the biocompatibility, bioactivity, and antibacterial properties of these metal coatings. Our approach involves integrating physical vapour deposition coating technology with 3D bioprinting methods. To produce tissue models, melt electrowritten (MEW) meshes composed of polycaprolactone (PCL) were printed and integrated into cell-laden methacrylated galatin (GelMa). The mouse embryonic fibroblast cell line (NIH3T3) was used. GelMa concentration and printing parameters for MEW were adjusted and mechanical analysis of the models was performed to find the optimal material composition. Optimized models were placed on the glass slide surfaces coated with typically non-toxic metals, <em>i.e.</em> titanium (<strong>Ti</strong>), tantalum (<strong>Ta</strong>), zirconium (<strong>Zr</strong>), silver (<strong>Ag</strong>), tungsten (<strong>W</strong>), and niobium (<strong>Nb</strong>). Except for <strong>W</strong>, all other coatings were stable in a physiological wet environment, as studied by SEM. The viability of the cells at different distances from the coated surface was analyzed. Antibacterial tests against pathogens <em>Staphylococcus aureus</em> and <em>Escherichia coli</em> were used to assess the models’ resistance, important for infection control. While <strong>Ag</strong> coatings showed toxicity, <strong>Nb</strong>, <strong>Ta</strong>, <strong>Ti</strong>, and <strong>Zr</strong> coatings promoted fibroblast growth, with the highest cell viability after 14 days of culture revealed for <strong>Ta</strong> and <strong>Nb</strong>. The strongest antimicrobial effect against <em>E. coli</em> and <em>S. aureus</em> was observed for <strong>Ag</strong> and <strong>W</strong>, while <strong>Ta</strong> exhibited antibacterial activity only against <em>S. aureus</em>. From a broader perspective, our work offers an effective 3D <em>in vitro</em> model for an in-depth characterization of the biocompatibility of metals and metal coatings.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 4","pages":" 1075-1090"},"PeriodicalIF":5.8,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/bm/d4bm01335b?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating 3D printing of biomaterials with nitric oxide release† 将生物材料3D打印与一氧化氮释放相结合。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2025-01-07 DOI: 10.1039/D4BM01304B
Herllan V. de Almeida, Mateus P. Bomediano, Daniele M. Catori, Elizaura H. C. Silva and Marcelo G. de Oliveira
{"title":"Integrating 3D printing of biomaterials with nitric oxide release†","authors":"Herllan V. de Almeida, Mateus P. Bomediano, Daniele M. Catori, Elizaura H. C. Silva and Marcelo G. de Oliveira","doi":"10.1039/D4BM01304B","DOIUrl":"10.1039/D4BM01304B","url":null,"abstract":"<p >The pivotal roles played by nitric oxide (NO) in tissue repair, inflammation, and immune response have spurred the development of a wide range of NO-releasing biomaterials. More recently, 3D printing techniques have significantly broadened the potential applications of polymeric biomaterials in biomedicine. In this context, the development of NO-releasing biomaterials that can be fabricated through 3D printing techniques has emerged as a promising strategy for harnessing the benefits of localized NO release from implantable devices, tissue regeneration scaffolds, or bandages for topical applications. Although 3D printing techniques allow for the creation of polymeric constructs with versatile designs and high geometric precision, integrating NO-releasing functional groups or molecules into these constructs poses several challenges. NO donors, such as <em>S</em>-nitrosothiols (RSNOs) or diazeniumdiolates (NONOates), may release NO thermally, complicating their incorporation into resins that require heating for extrusion-based 3D printing. Conversely, NO released photochemically from RSNOs effectively inhibits radical propagation, thus hindering photoinduced 3D printing processes. This review outlines the primary strategies employed to overcome these challenges in developing NO-releasing biomaterials <em>via</em> 3D printing, and explores future prospects in this rapidly evolving field.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 4","pages":" 858-874"},"PeriodicalIF":5.8,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142968800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ganglioside-incorporating lipid nanoparticles as a polyethylene glycol-free mRNA delivery platform† 结合神经节苷脂纳米颗粒作为无聚乙二醇mRNA传递平台。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2025-01-07 DOI: 10.1039/D4BM01360C
Yafi S. Permana, Mincheol Jang, Kyunghwan Yeom, Erinn Fagan, Yong Jae Kim, Joon Hyeok Choi and Ji-Ho Park
{"title":"Ganglioside-incorporating lipid nanoparticles as a polyethylene glycol-free mRNA delivery platform†","authors":"Yafi S. Permana, Mincheol Jang, Kyunghwan Yeom, Erinn Fagan, Yong Jae Kim, Joon Hyeok Choi and Ji-Ho Park","doi":"10.1039/D4BM01360C","DOIUrl":"10.1039/D4BM01360C","url":null,"abstract":"<p >Incorporation of polyethylene glycol (PEG) is widely used in lipid nanoparticle (LNP) formulation in order to achieve adequate stability due to its stealth properties. However, studies have detected the presence of anti-PEG neutralizing antibodies after PEGylated LNP treatment, which are associated with anaphylaxis, accelerated LNP clearance and premature release of cargo. Here, we report the development of LNPs incorporating ganglioside, a naturally occurring stealth lipid, as a PEG-free alternative. Physicochemical characterization showed that ganglioside-LNPs exhibited superior stability throughout prolonged cold storage compared to stealth-free LNPs, preventing particle aggregation. Additionally, there was no significant change in particle size after serum incubation, indicating the ability of ganglioside to prevent unwanted serum protein adsorption. These results exemplify the effective stealth properties of ganglioside. Furthermore, ganglioside-LNPs exhibited significantly higher mRNA transfection <em>in vivo</em> after intravenous administration compared to stealth-free LNPs. The ability of ganglioside to confer excellent stealth properties to LNPs while still enabling <em>in vivo</em> mRNA expression makes it a promising candidate as a natural substitute for immunogenic PEG in mRNA-LNP delivery platforms, contributing to the future advancement of gene therapy.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 5","pages":" 1222-1232"},"PeriodicalIF":5.8,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/bm/d4bm01360c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142996407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hollow nanosystem-boosting synergistic effects between photothermal therapy and chemodynamic therapy via self-supplied hydrogen peroxide and relieved hypoxia† 中空纳米系统通过自供过氧化氢和缓解缺氧,增强光热疗法和化学动力学疗法之间的协同效应。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2025-01-06 DOI: 10.1039/D4BM01178C
Yunji Sun, Lixiao Zhen, Lin Xu, Peipei Li, Chao Zhang, Yang Zhang, Yisheng Zhao and Benkang Shi
{"title":"Hollow nanosystem-boosting synergistic effects between photothermal therapy and chemodynamic therapy via self-supplied hydrogen peroxide and relieved hypoxia†","authors":"Yunji Sun, Lixiao Zhen, Lin Xu, Peipei Li, Chao Zhang, Yang Zhang, Yisheng Zhao and Benkang Shi","doi":"10.1039/D4BM01178C","DOIUrl":"10.1039/D4BM01178C","url":null,"abstract":"<p >Nanomedicine-based photothermal therapy (PTT) has been considered as an excellent alternative for treatment of tumor tissue due to its high therapeutic efficiency and controllable range. However, the overexpression of heat shock proteins (HSPs) during PTT and the hypoxic properties of the tumor microenvironment can lead to intracellular thermal resistance and reduce its effectiveness. Reactive oxygen species (ROS), followed by the application of chemodynamic therapy (CDT) and photodynamic therapy (PDT), can eliminate HSPs and overcome thermal resistance. High concentration H<small><sub>2</sub></small>O<small><sub>2</sub></small> was used to catalyze oxygen production in the tumor microenvironment to improve the anaerobic state. Therefore, we present a multifunctional nanocarrier system driving chemodynamic–photodynamic–photothermal synergistic therapy <em>via</em> self-supplied hydrogen peroxide and relieved hypoxia for prostate tumor treatment.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 7","pages":" 1784-1800"},"PeriodicalIF":5.8,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/bm/d4bm01178c?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143490084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-inflammatory and osteoconductive multi-functional nanoparticles for the regeneration of an inflamed alveolar bone defect† 抗炎和骨传导的多功能纳米颗粒用于炎症牙槽骨缺损的再生。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2025-01-03 DOI: 10.1039/D4BM01280A
Hyewoo Jeong, Keerthana Subramanian, Jong-Bin Lee, Hayeon Byun, Heungsoo Shin and Jeong-Ho Yun
{"title":"Anti-inflammatory and osteoconductive multi-functional nanoparticles for the regeneration of an inflamed alveolar bone defect†","authors":"Hyewoo Jeong, Keerthana Subramanian, Jong-Bin Lee, Hayeon Byun, Heungsoo Shin and Jeong-Ho Yun","doi":"10.1039/D4BM01280A","DOIUrl":"10.1039/D4BM01280A","url":null,"abstract":"<p >Infected alveolar bone defects pose challenging clinical issues due to disrupted intrinsic healing mechanisms. Thus, the employment of advanced biomaterials enabling the modulation of several aspects of bone regeneration is necessary. This study investigated the effect of multi-functional nanoparticles on anti-inflammatory/osteoconductive characteristics and bone repair in the context of inflamed bone abnormalities. Tannic-acid mineral nanoparticles (TMPs) were prepared by the supramolecular assembly of tannic acid with bioactive calcium and phosphate ions, which were subsequently incorporated into collagen plugs <em>via</em> molecular interactions. Under physiological conditions, <em>in vitro</em> analysis confirmed that tannic acid was dissociated and released, which significantly reduced the expression of pro-inflammatory genes in lipopolysaccharide (LPS)-activated RAW264.7 cells. Meanwhile, the bioactive ions of Ca<small><sup>2+</sup></small> and PO<small><sub>4</sub></small><small><sup>3−</sup></small> synergistically increased the gene and protein expressions of osteogenic markers of bone marrow-derived stem cells. For <em>in vivo</em> studies, combined endodontic-periodontal lesions were induced in beagle dogs where the plugs were readily implanted. After 2 months of the implantation, analysis of micro-computed tomography and histomorphometry revealed that groups of dogs implanted with the plug incorporating TMPs exhibited a significant decrease in bone surface density as well as structural model index, and significant increase in the mineralized bone content, respectively, with positive OPN expression being observed in reversal lines. Notably, the profound improvement in bone regeneration relied on the concentration of TMPs in the implants, underscoring the promise of multi-functional nanoparticles for treating infected alveolar bones.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 3","pages":" 810-825"},"PeriodicalIF":5.8,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142918730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimized synthesis of biphasic calcium phosphate: enhancing bone regeneration with a tailored β-tricalcium phosphate/hydroxyapatite ratio 优化合成双相磷酸钙:通过量身定制的β-磷酸三钙/羟基磷灰石比例增强骨再生。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2025-01-03 DOI: 10.1039/D4BM01179A
Dieu Linh Tran, Qui Thanh Hoai Ta, Manh Hoang Tran, Thi My Huyen Nguyen, Ngoc Thuy Trang Le, Anh Phuong Nguyen Hong, Hyun-Ji Park, Ki Dong Park and Dai Hai Nguyen
{"title":"Optimized synthesis of biphasic calcium phosphate: enhancing bone regeneration with a tailored β-tricalcium phosphate/hydroxyapatite ratio","authors":"Dieu Linh Tran, Qui Thanh Hoai Ta, Manh Hoang Tran, Thi My Huyen Nguyen, Ngoc Thuy Trang Le, Anh Phuong Nguyen Hong, Hyun-Ji Park, Ki Dong Park and Dai Hai Nguyen","doi":"10.1039/D4BM01179A","DOIUrl":"10.1039/D4BM01179A","url":null,"abstract":"<p >Biphasic calcium phosphate (BCP) is a bioceramic widely used in hard tissue engineering for bone replacement. BCP consists of β-tricalcium phosphate (β-TCP) – a highly soluble and resorbable phase – and hydroxyapatite (HA) – a highly stable phase, creating a balance between solubility and resorption, optimally supporting cell interactions and tissue growth. The β-TCP/HA ratio significantly affects the resorption, solubility, and cellular response, with a higher β-TCP ratio increasing resorption due to its solubility. BCP is commonly synthesized by calcining calcium-deficient apatite (CDA) at temperatures above 700 °C <em>via</em> direct or indirect methods. This study investigated the effects of pH and sintering temperature on BCP synthesized <em>via</em> wet precipitation, aiming to achieve an 80/20 β-TCP/HA ratio, which is known to be optimal for bone regeneration. By maintaining a constant Ca/P precursor ratio of 1.533, the optimal conditions were determined to be a pH of 5.5–6 and a sintering temperature of 900 °C, chosen to balance material stability and solubility. The successful synthesis was confirmed using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. At the same time, the material's physical and chemical properties were further characterized through scanning electron microscopy (SEM) and degradation studies in a simulated body fluid (SBF). <em>In vitro</em> tests demonstrated excellent cytocompatibility and osteogenic differentiation, while <em>in vivo</em> studies on rabbit femur defects demonstrated significant bone regeneration, with bone-to-tissue volume ratios exceeding 50% within four weeks. These results highlight the potential of BCPs in bone tissue engineering and biomaterials research.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 4","pages":" 969-979"},"PeriodicalIF":5.8,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the mystery: effect of trapped air on platelet adhesion on hydrophobic nanostructured titanium dioxide† 揭开谜团:困住的空气对疏水纳米二氧化钛上血小板粘附的影响。
IF 5.8 3区 医学
Biomaterials Science Pub Date : 2025-01-03 DOI: 10.1039/D4BM01143K
Zhenyu Shen, Ke Wu, Zhiwei Chen, Yun Yang and Qiaoling Huang
{"title":"Unraveling the mystery: effect of trapped air on platelet adhesion on hydrophobic nanostructured titanium dioxide†","authors":"Zhenyu Shen, Ke Wu, Zhiwei Chen, Yun Yang and Qiaoling Huang","doi":"10.1039/D4BM01143K","DOIUrl":"10.1039/D4BM01143K","url":null,"abstract":"<p >Nature-inspired superhydrophobic materials have attracted considerable interest in blood-contacting biomedical applications due to their remarkable water-repellent and self-cleaning properties. However, the interaction mechanism between blood components and superhydrophobic surfaces remains unclear. To explore the effect of trapped air on platelet adhesion, we designed four distinct hydrophobic titanium dioxide (TiO<small><sub>2</sub></small>) nanostructures with different fractions of trapped air. Ultrasonication was used to remove trapped air, allowing for direct comparison between hydrophobic surfaces with and without observable trapped air. The results demonstrate that all four kinds of hydrophobic materials significantly reduce platelet adhesion, regardless of observable trapped air. As nanostructure size increases, the proportion of air also increases, trapped air reduces fibrinogen adsorption but increases platelet adhesion, particularly in the largest nanostructures with superhydrophobicity. Upon air removal, protein adsorption increases compared to the same sample with air, while platelet adhesion decreases. This indicates that trapped air reduces protein adsorption but unexpectedly enhances platelet adhesion, which is contrary to our intuitive expectations. Conversely, hydrophobic surfaces without trapped air minimize platelet adhesion. To gain a better understanding of this phenomenon, we propose an interpretable model. Overall, this study challenges conventional assumptions and offers new insights for the design and application of superhydrophobic materials.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 3","pages":" 627-638"},"PeriodicalIF":5.8,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142918734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信