评估CAP-p15功能化对粗糙tio2涂层316L不锈钢表面生物活性的影响。

IF 5.7 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Guadalupe Ureiro-Cueto, Sandra E. Rodil, José Ocotlán Flores-Flores, Lía Hoz-Rodríguez, Higinio Arzate and Gonzalo Montoya-Ayala
{"title":"评估CAP-p15功能化对粗糙tio2涂层316L不锈钢表面生物活性的影响。","authors":"Guadalupe Ureiro-Cueto, Sandra E. Rodil, José Ocotlán Flores-Flores, Lía Hoz-Rodríguez, Higinio Arzate and Gonzalo Montoya-Ayala","doi":"10.1039/D5BM00294J","DOIUrl":null,"url":null,"abstract":"<p >Stainless steel 316L (316L SS) is frequently used in implants and medical devices because of its low cost, high mechanical strength, and adequate biocompatibility. However, its bioinert nature limits osseointegration, often confining its applications to temporary uses. To address this issue, surface modifications such as oxide coatings and peptide adsorption have emerged as promising strategies to enhance the bioactivity of 316L SS. This study explores the surface modification of 316L SS substrates through sandblasting, followed by the deposition of a TiO<small><sub>2</sub></small> layer and subsequent biofunctionalization with a cementum attachment protein-derived peptide (CAP-p15) <em>via</em> physisorption using three different concentrations. The modified surfaces were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDX), surface roughness analysis, and water contact angle measurements (WCA). Samples were incubated in artificial saliva (AS) for 21 days. The resulting peptide release, surface microstructure, the morphology and chemical composition of the deposits were evaluated. Additionally, human periodontal ligament cells (hPDLCs) were cultured on the modified surfaces to assess cell viability and attachment. Characterization revealed significant changes in surface chemistry, roughness, and wettability following functionalization. <em>In vitro</em> testing in AS demonstrated the formation of carbonated apatite, indicative of enhanced bioactivity. Furthermore, hPDLCs cultured on functionalized surfaces exhibited enhanced viability, improved adhesion, and enhanced cell spreading. These results suggest that peptide-based functionalization with CAP-p15 is a promising strategy for enhancing the osseointegration potential of 316L SS, offering valuable prospects for bone tissue regeneration.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" 18","pages":" 5122-5133"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/bm/d5bm00294j?page=search","citationCount":"0","resultStr":"{\"title\":\"Assessing the impact of CAP-p15 functionalization on the bioactivity of rough TiO2-coated 316L stainless steel surfaces\",\"authors\":\"Guadalupe Ureiro-Cueto, Sandra E. Rodil, José Ocotlán Flores-Flores, Lía Hoz-Rodríguez, Higinio Arzate and Gonzalo Montoya-Ayala\",\"doi\":\"10.1039/D5BM00294J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Stainless steel 316L (316L SS) is frequently used in implants and medical devices because of its low cost, high mechanical strength, and adequate biocompatibility. However, its bioinert nature limits osseointegration, often confining its applications to temporary uses. To address this issue, surface modifications such as oxide coatings and peptide adsorption have emerged as promising strategies to enhance the bioactivity of 316L SS. This study explores the surface modification of 316L SS substrates through sandblasting, followed by the deposition of a TiO<small><sub>2</sub></small> layer and subsequent biofunctionalization with a cementum attachment protein-derived peptide (CAP-p15) <em>via</em> physisorption using three different concentrations. The modified surfaces were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDX), surface roughness analysis, and water contact angle measurements (WCA). Samples were incubated in artificial saliva (AS) for 21 days. The resulting peptide release, surface microstructure, the morphology and chemical composition of the deposits were evaluated. Additionally, human periodontal ligament cells (hPDLCs) were cultured on the modified surfaces to assess cell viability and attachment. Characterization revealed significant changes in surface chemistry, roughness, and wettability following functionalization. <em>In vitro</em> testing in AS demonstrated the formation of carbonated apatite, indicative of enhanced bioactivity. Furthermore, hPDLCs cultured on functionalized surfaces exhibited enhanced viability, improved adhesion, and enhanced cell spreading. These results suggest that peptide-based functionalization with CAP-p15 is a promising strategy for enhancing the osseointegration potential of 316L SS, offering valuable prospects for bone tissue regeneration.</p>\",\"PeriodicalId\":65,\"journal\":{\"name\":\"Biomaterials Science\",\"volume\":\" 18\",\"pages\":\" 5122-5133\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/bm/d5bm00294j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/bm/d5bm00294j\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/bm/d5bm00294j","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

不锈钢316L (316L SS)由于其低成本、高机械强度和足够的生物相容性,经常用于植入物和医疗器械。然而,它的生物惰性性质限制了骨整合,通常限制了它的应用于临时用途。为了解决这一问题,氧化物涂层和肽吸附等表面修饰已成为增强316L SS生物活性的有希望的策略。本研究探索了通过喷砂对316L SS底物进行表面修饰,然后沉积TiO2层,随后通过三种不同浓度的物理吸附使骨质附着蛋白衍生肽(CAP-p15)具有生物功能。利用x射线光电子能谱(XPS)、扫描电镜结合能量色散x射线能谱(SEM/EDX)、表面粗糙度分析和水接触角测量(WCA)对改性表面进行了表征。样品在人工唾液中孵育21 d。对所得的肽释放、表面微观结构、沉积物的形貌和化学成分进行了评价。此外,将人牙周韧带细胞(hpdlc)培养在修饰的表面上,以评估细胞的活力和附着。表征揭示了功能化后表面化学、粗糙度和润湿性的显著变化。AS的体外试验表明形成了碳酸盐磷灰石,表明生物活性增强。此外,在功能化表面培养的hpdlc表现出更高的活力、更好的粘附性和增强的细胞扩散。这些结果表明,CAP-p15的肽基功能化是增强316L SS骨整合潜力的一种有希望的策略,为骨组织再生提供了宝贵的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assessing the impact of CAP-p15 functionalization on the bioactivity of rough TiO2-coated 316L stainless steel surfaces

Assessing the impact of CAP-p15 functionalization on the bioactivity of rough TiO2-coated 316L stainless steel surfaces

Stainless steel 316L (316L SS) is frequently used in implants and medical devices because of its low cost, high mechanical strength, and adequate biocompatibility. However, its bioinert nature limits osseointegration, often confining its applications to temporary uses. To address this issue, surface modifications such as oxide coatings and peptide adsorption have emerged as promising strategies to enhance the bioactivity of 316L SS. This study explores the surface modification of 316L SS substrates through sandblasting, followed by the deposition of a TiO2 layer and subsequent biofunctionalization with a cementum attachment protein-derived peptide (CAP-p15) via physisorption using three different concentrations. The modified surfaces were characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDX), surface roughness analysis, and water contact angle measurements (WCA). Samples were incubated in artificial saliva (AS) for 21 days. The resulting peptide release, surface microstructure, the morphology and chemical composition of the deposits were evaluated. Additionally, human periodontal ligament cells (hPDLCs) were cultured on the modified surfaces to assess cell viability and attachment. Characterization revealed significant changes in surface chemistry, roughness, and wettability following functionalization. In vitro testing in AS demonstrated the formation of carbonated apatite, indicative of enhanced bioactivity. Furthermore, hPDLCs cultured on functionalized surfaces exhibited enhanced viability, improved adhesion, and enhanced cell spreading. These results suggest that peptide-based functionalization with CAP-p15 is a promising strategy for enhancing the osseointegration potential of 316L SS, offering valuable prospects for bone tissue regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信