Longjun Gu, Xiangdi Mao, Chunhui Tian, Yang Yang, Kaiyuan Yang, Scott G Canfield, Donghui Zhu, Mingxia Gu, Feng Guo
{"title":"Engineering blood-brain barrier microphysiological systems to model Alzheimer's disease monocyte penetration and infiltration.","authors":"Longjun Gu, Xiangdi Mao, Chunhui Tian, Yang Yang, Kaiyuan Yang, Scott G Canfield, Donghui Zhu, Mingxia Gu, Feng Guo","doi":"10.1039/d5bm00204d","DOIUrl":"https://doi.org/10.1039/d5bm00204d","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive and neurodegenerative disease, predominantly causing dementia. Despite increasing clinical evidence suggesting the involvement of peripheral immune cells such as monocytes in AD pathology, the dynamic penetration and infiltration of monocytes crossing blood-brain barrier (BBB) and inducing neuroinflammation is largely understudied in an AD brain. Herein, we engineer BBB-like microphysiological system (BBB-MPS) models for recapitulating the dynamic penetration and infiltration of monocytes in an AD patient's brain. Each BBB-MPS model can be engineered by integrating a functional BBB-like structure on a human cortical organoid using a 3D-printed device within a well of a plate. By coculturing these BBB-MPS models with monocytes from AD patients and age-matched healthy donors, we found that AD monocytes exhibit significantly greater BBB penetration and brain infiltration compared to age-matched control monocytes. Moreover, we also tested the interventions including Minocycline and Bindarit, and found they can effectively inhibit AD monocyte infiltration, subsequently reducing neuroinflammation and neuronal apoptosis. We believe these scalable and user-friendly BBB-MPS models may hold promising potential in modeling and advancing therapeutics for neurodegenerative and neuroinflammatory diseases.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144109049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Allison Meer, Aidan Mathews, Mariana Cabral, Andrew Tarabokija, Evan Carroll, Henna Chaudhry, Michelle Paszek, Nancy Radecker, Thomas Palaia, Hazel Consunji de Guzman, Roche C de Guzman
{"title":"Biocompatibility and wound-healing prospect of KAPs-depleted residual hair biomaterial.","authors":"Allison Meer, Aidan Mathews, Mariana Cabral, Andrew Tarabokija, Evan Carroll, Henna Chaudhry, Michelle Paszek, Nancy Radecker, Thomas Palaia, Hazel Consunji de Guzman, Roche C de Guzman","doi":"10.1039/d4bm00777h","DOIUrl":"https://doi.org/10.1039/d4bm00777h","url":null,"abstract":"<p><p>This work is an in-depth investigation of the <i>in vitro</i> and <i>in vivo</i> biocompatibility of processed and treated residual human hair samples with intact cuticle layers. The specimens included oxidized hair with minimal melanin (BLH) and hair with medium- (M-KAP) and low- (L-KAP) amounts of keratin associated proteins (KAPs), confirmed through gel electrophoresis, electron microscopy, trichrome histological staining, and tensile biomechanics, in comparison to the untreated regular hair (REG) control. All hair groups, high KAPs (H-KAPs: REG and BLH), M-KAP, and L-KAP, are non-cytotoxic in the adipose fibroblast's response to their extracts based on the ISO 10993-5 medical device biomaterial testing standard. <i>In vivo</i> mouse subcutaneous implantation (ISO 10993-6, local effects) at 2 weeks showed a foreign body response (FBR) with thin fibrous encapsulation at 28% relative skin dermis thickness; but the L-KAP implant mitigated a significant decrease in FBR area compared to H-KAPs and a lower number of immune cells of mostly macrophages and mast cells on the biomaterial's surface. In the bulk of the capsules, blood vessels and collagen extracellular matrix densities were similar among groups. These findings suggest that small globular KAPs diffuse out of the cortex to the host-biomaterial interface which induce a slightly-elevated FBR but limited to the implant's surface vicinity. For translatability, we evaluated the effectiveness of the residual hair with the most depleted KAPs (L-KAP) in a 10 mm-diameter, splinted, and full-thickness mouse skin excision wound. Treatment with the L-KAP mesh exhibited an 8% healing improvement per day compared to the untreated control: significantly reducing the projected complete healing time by 30%. On-going research focuses on purer keratin-based and macromolecularly organized residual hair biomaterials for drug-delivery as they are deemed the most biocompatible.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144092179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Injectable and self-healable supramolecular hydrogels assembled by quaternised chitosan/alginate polyelectrolyte complexation for sustained drug delivery and cell encapsulation.","authors":"Cristiana F V Sousa, João Borges, João F Mano","doi":"10.1039/d5bm00072f","DOIUrl":"https://doi.org/10.1039/d5bm00072f","url":null,"abstract":"<p><p>Hydrogels formed through phase separation during the complexation of oppositely charged polymers have unique properties, including fast self-assembly, hierarchical microstructures, and tunable properties. These features make them highly attractive materials for various biomedical applications, such as drug delivery, protective coatings, and surface adhesives. Notably, injectable polyelectrolyte complex (PEC) supramolecular hydrogels stand out for their minimally invasive administration and reduced trauma and side effects, providing attractive alternatives to covalent hydrogels, which are constrained by the irreversibility of their crosslinks, limiting their versatility and broader applicability. Sustainable marine-origin polysaccharides have been used for developing hydrogels due to their proven biocompatibility, non-cytotoxicity and wide bioavailability from renewable resources. In particular, chitosan (CHT) and alginate (ALG) have been widely employed to develop hydrogels, taking advantage of their opposite charge nature. However, the limited solubility of CHT under physiological conditions limits the range of bioapplications. Herein, we report the development of size- and shape-tunable PEC supramolecular hydrogels encompassing water-soluble quaternised CHT and ALG biopolymers, under physiological conditions, by polyelectrolyte complexation. The rheological and mechanical properties of the PECs are studied, demonstrating their injectability, self-healing behaviour, and cytocompatibility towards human adipose-derived stem cells. A sustained and controlled release of encapsulated fluorescein isothiocyanate-labelled bovine serum albumin is observed over fourteen days. This work paves the way for the design and development of advanced CHT-based injectable biomaterial platforms for a wide array of biomedical and biotechnological applications.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144092186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shouyuan Jiang, Anyu Zhang, Behnam Akhavan, John Whitelock, Marcela M Bilek, Steven G Wise, Megan S Lord, Jelena Rnjak-Kovacina
{"title":"Biofunctionalization of electrospun silk scaffolds with perlecan for vascular tissue engineering.","authors":"Shouyuan Jiang, Anyu Zhang, Behnam Akhavan, John Whitelock, Marcela M Bilek, Steven G Wise, Megan S Lord, Jelena Rnjak-Kovacina","doi":"10.1039/d5bm00364d","DOIUrl":"https://doi.org/10.1039/d5bm00364d","url":null,"abstract":"<p><p>Electrospun silk fibroin scaffolds have garnered significant interest in vascular tissue engineering due to their biocompatibility, mechanical strength, and tunable degradation. However, their lack of intrinsic cell-binding domains limits endothelialization, a critical factor for vascular graft success. This study explores the biofunctionalization of electrospun silk scaffolds with recombinant perlecan domain V (rDV) using plasma immersion ion implantation (PIII) treatment, a surface modification method enabling robust covalent immobilization without the use of reagents. The biofunctionalized scaffolds enhanced endothelial cell adhesion, proliferation, and retention under physiological flow conditions while inhibiting smooth muscle cell proliferation. Additionally, the functionalized scaffolds demonstrated angiogenic potential <i>in vivo</i>. These findings underscore the potential of rDV-functionalized silk scaffolds as a promising candidate for small-diameter vascular grafts, addressing key challenges of endothelialization and vascular cell modulation in clinical applications.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144092182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"<i>In vitro</i> senescence and senolytic functional assays.","authors":"Patrick Ryan, Jungwoo Lee","doi":"10.1039/d4bm01684j","DOIUrl":"https://doi.org/10.1039/d4bm01684j","url":null,"abstract":"<p><p>A detailed understanding of aging biology and the development of anti-aging therapeutic strategies remain imperative yet inherently challenging due to the protracted nature of aging. Cellular senescence arises naturally through replicative exhaustion and is accelerated by clinical treatments or environmental stressors. The accumulation of senescent cells-defined by a loss of mitogenic potential, resistance to apoptosis, and acquisition of a pro-inflammatory secretory phenotype-has been implicated as a key driver of chronic disease, tissue degeneration, and organismal aging. Recent studies have highlighted the therapeutic promise of senolytic drugs, which selectively eliminate senescent cells. Compelling results from preclinical animal studies and ongoing clinical trials underscore this potential. However, the clinical translation of senolytics requires further pharmacological validation to refine selectivity, minimize toxicity, and determine optimal dosing. Equally important is the evaluation of senolytics' potential to restore tissue structure and function by reducing the senescent cell burden. In vitro tissue culture models offer a powerful platform to advance these efforts. This review summarizes the current landscape of <i>in vitro</i> systems used for inducing cellular senescence-referred to as \"senescence assays\"-and for screening senolytic drugs-referred to as \"senolytic assays\". We conclude by discussing key challenges to improving mechanistic insight, predictive accuracy, and clinical relevance in senolytic drug development, as well as emerging applications of senolytic therapies.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144074973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Micah Mallory, Emma Grace Johnson, Soumen Saha, Sanika Pandit, Joshua T McCune, Mengnan Dennis, Jessica M Gluck, Craig L Duvall, Ashley C Brown, Ashutosh Chilkoti, Yevgeny Brudno
{"title":"From saccharides to synthetics: exploring biomaterial scaffolds as cell transduction enhancers.","authors":"Micah Mallory, Emma Grace Johnson, Soumen Saha, Sanika Pandit, Joshua T McCune, Mengnan Dennis, Jessica M Gluck, Craig L Duvall, Ashley C Brown, Ashutosh Chilkoti, Yevgeny Brudno","doi":"10.1039/d4bm01588f","DOIUrl":"10.1039/d4bm01588f","url":null,"abstract":"<p><p>Dry, transduction biomaterial scaffolds (Drydux) represent a novel platform for enhancing viral transduction, achieving drastic improvements in transduction efficiency (from ∼10% to >80%) while simplifying production of potent genetically engineered cells. This technology addresses a critical bottleneck in cell therapy manufacturing, where conventional methods require complex protocols and often yield suboptimal results. However, the underlying material science driving Drydux-enhanced transduction remains unclear. Here, we comprehensively assess biomaterial properties that influence viral transduction enhancement through systematic testing of polysaccharides, proteins, elastin-like polypeptides (ELPs), and synthetic polymers. Our findings reveal that surface porosity and liquid absorption are primary drivers of transduction enhancement, while polymer charge and flexibility play secondary roles. Negatively charged and flexible materials-particularly gelatin, hyaluronan, and alginate-demonstrated superior performance. Notably, despite promising material characteristics, synthetic polymers failed to enhance transduction, highlighting the unique advantages of specific biomaterial compositions. By elucidating these structure-function relationships, this work establishes design principles for optimizing biomaterial-enhanced transduction and expands the Drydux platform's potential for transforming cell therapy manufacturing, regenerative medicine, and beyond.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12082391/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144074976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in oxygenation nanozymes for overcoming diabetic ulcers.","authors":"Sumi Choi, Minjeong Kim, Minjin Kim, Su-Hwan Kim","doi":"10.1039/d5bm00340g","DOIUrl":"https://doi.org/10.1039/d5bm00340g","url":null,"abstract":"<p><p>Diabetic ulcers, affecting 15-25% of diabetes patients worldwide, are characterized by localized hypoxia that impedes healing. This review explores the emerging field of <i>in situ</i> oxygen-generating nanozymes as a promising approach to diabetic ulcer treatment. Nanozymes, synthetic nanoparticles mimicking natural enzyme activities, have shown potential in generating oxygen <i>in situ</i>, scavenging reactive oxygen species, and modulating the wound microenvironment. Materials such as manganese dioxide, cerium dioxide, platinum nanoparticles, and molybdenum-based quantum dots have demonstrated efficacy in preclinical studies, often exhibiting multiple enzyme-like activities. These nanozymes have shown accelerated wound closure, enhanced angiogenesis, and improved tissue regeneration in animal models. However, challenges remain, including optimizing nanozyme-hydrogel interactions, addressing the potential toxicity of metal-based nanomaterials, and determining optimal oxygen concentrations for various wound conditions. Future research directions include developing biocompatible nanozymes, enhancing delivery systems, and exploring combination therapies. This review underscores the potential of nanozyme-based therapies to revolutionize the treatment of diabetic ulcers and potentially other hypoxia-related conditions.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144074974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mateo Dallos Ortega, Jenny Aveyard, Raghda Magdy Abdelgawad, Reem El-Gendy, Alexander Ciupa, David Whetnall, Julia Behnsen, Robert J Poole, Raechelle A D'Sa
{"title":"Antimicrobial 3D printed gelatin scaffolds for root canal disinfection in regenerative endodontics procedures.","authors":"Mateo Dallos Ortega, Jenny Aveyard, Raghda Magdy Abdelgawad, Reem El-Gendy, Alexander Ciupa, David Whetnall, Julia Behnsen, Robert J Poole, Raechelle A D'Sa","doi":"10.1039/d5bm00440c","DOIUrl":"https://doi.org/10.1039/d5bm00440c","url":null,"abstract":"<p><p>Regenerative endodontic procedures (REPs) which aim to promote root development and pulp tissue regeneration in necrotic immature teeth, have emerged as a promising therapeutic approach. A critical determinant of REP success hinges on effective disinfection of the root canal system, which must eliminate microbial contaminants whilst preserving the microenvironment necessary for dental pulp stem cell tissue regeneration. This study reports on the fabrication of biocompatible 3D printed hydrogel scaffolds designed for root canal disinfection. The scaffolds incorporate benzyldimethyldodecylammonium chloride (BDMDAC) a broad-spectrum quaternary ammonium compound characterised by low cytotoxicity and minimal risk of resistance development. BDMDAC loaded gelatin biomaterial inks were systematically evaluated for rheology properties, mechanical stability and drug release properties. Scaffolds containing 150 μg mL<sup>-1</sup> and 250 μg mL<sup>-1</sup> BDMDAC exhibited excellent antimicrobial efficacy against 5 bacterial pathogens (including 3 endodontic bacteria-<i>Enterococcus faecalis</i>, <i>Porphyromonas gingivalis</i>, and <i>Streptococcus mutans</i>). Cytocompatibility assays using primary human dental pulp stem cells (HDPSCs) derived from 3 donors confirmed over 70% of cell viability. Furthermore, freeze-dried scaffolds demonstrated excellent shelf-life stability for at least six months. Overall, these findings highlight the potential of 3D printed BDMDAC-loaded 3D printed gelatin scaffolds as an effective and cytocompatible platform for root canal disinfection in REPs.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144074975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functionalization of viscoelastic gels with decellularized extracellular matrix microparticles enhances tissue adhesion, cell spreading, and tissue regeneration.","authors":"Debabrata Palai, Hana Yasue, Shima Ito, Hiyori Komatsu, Tetsushi Taguchi, Akihiro Nishiguchi","doi":"10.1039/d5bm00394f","DOIUrl":"https://doi.org/10.1039/d5bm00394f","url":null,"abstract":"<p><p>The natural extracellular matrix (ECM) is viscoelastic and fibrous, which are crucial characteristics for controlling cellular responses. In contrast, synthetic gels are mostly elastic and less effective at promoting mechanotransduction. Thus, the design of gels that provide mechanical and biochemical cues for tissue regeneration needs to be explored. In this study, we aimed to develop viscoelastic gels functionalized with decellularized ECM (dECM) microparticles for tissue regeneration. The incorporation of dECM microparticles into gels improved not only the tissue adhesive properties of the gels but also their viscoelasticity. The modulation of the mechanical properties of the gels elicited cell adhesion and spreading. Moreover, the functionalization of viscoelastic gels with dECM microparticles promoted tissue regeneration in volumetric muscle-loss models. This approach would be a powerful method because functional scaffolds with sufficient mechanical and biological properties facilitate tissue regeneration.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143953033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter J Jensen, Josh P Graham, Trevor K Busch, Owen Fitz, Sivani Jayanadh, Thomas E Pashuck, Tomas Gonzalez-Fernandez
{"title":"Biocompatible composite hydrogel with on-demand swelling-shrinking properties for 4D bioprinting.","authors":"Peter J Jensen, Josh P Graham, Trevor K Busch, Owen Fitz, Sivani Jayanadh, Thomas E Pashuck, Tomas Gonzalez-Fernandez","doi":"10.1039/d5bm00551e","DOIUrl":"https://doi.org/10.1039/d5bm00551e","url":null,"abstract":"<p><p>Hydrogels with tunable swelling and shrinking properties are of great interest in biomedical applications, particularly in wound healing, tissue regeneration, and drug delivery. Traditional hydrogels often fail to achieve high swelling without mechanical failure. In contrast, high-swelling hydrogels can absorb large amounts of liquid, expanding their volume by 10-1000 times, due to low crosslink density and the presence of hydrophilic groups. Additionally, some high-swelling hydrogels can also shrink in response to external stimuli, making them promising candidates for applications like on-demand drug delivery and biosensing. An emerging application of high-swelling hydrogels is four-dimensional (4D) printing, where controlled swelling induces structural transformations in a 3D printed construct. However, current hydrogel systems show limited swelling capacity, restricting their ability to undergo significant shape changes. To address these limitations, we developed a high-swelling composite hydrogel, termed SwellMA, by combining gelatin methacryloyl (GelMA) and sodium polyacrylate (SPA). SwellMA exhibits a swelling capacity over 500% of its original area and can increase its original water weight by 100-fold, outperforming existing materials in 4D bioprinting. Furthermore, SwellMA constructs can cyclically swell and shrink on-demand upon changing the ionic strength of the aqueous solution. Additionally, SwellMA demonstrates superior cytocompatibility and cell culture properties than SPA, along with enhanced 3D printing fidelity. These findings demonstrate SwellMA's potential for advanced 4D printing and a broad range of biomedical applications requiring precise and dynamic control over hydrogel swelling and shrinking.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143955799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}