{"title":"4D-printed multifunctional hydrogels as flexible strain sensors and nerve conduits.","authors":"Akshat Joshi, Saswat Choudhury, Arabinda Majhi, Sampath Parasuram, Vageesh Singh Baghel, Samrat Chauhan, Supriya Khanra, Debrupa Lahiri, Kaushik Chatterjee","doi":"10.1039/d5bm00166h","DOIUrl":null,"url":null,"abstract":"<p><p>Conductive hydrogels are critical for advanced bioelectronics and the repair of electroactive tissues. However, developing conductive hydrogels into complex biomimetic shapes with good flexibility and bioactivity poses a major biofabrication challenge. This study utilizes dual-component hydrogel inks based on alginate incorporating conductive fCNT (acid-functionalized carbon nanotube) nanofillers, with the composite gel exhibiting an electrical conductivity of 6.6 ± 0.5 mS cm<sup>-1</sup> at 2 mg ml<sup>-1</sup> fCNT loading. Owing to their good combination of electrical conductivity and mechanical properties, the (three-dimensional) 3D-printed gels were successfully applied as strain sensors to sense subtle human motions, such as finger and elbow bending. Bilayered hydrogels prepared through four-dimensional (4D) printing exhibited programmable shape changes owing to differential swelling post-printing to yield nerve guidance conduits (NGCs) of intricate and tissue-adaptable designs, such as single and multichannel and bifurcated designs, based on accurate prediction by finite element analysis. The proliferation of neural cells was enhanced on the fCNT-gel compared to the neat gel. Sutureless deployment and enhanced peripheral nerve regeneration were established for the fCNT-gel in a rat sciatic nerve injury model. Overall, this work presents the fabrication of 4D-printed multifunctional conductive hydrogels, which can find diverse applications ranging from implantable nerve conduits to strain sensing.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5bm00166h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Conductive hydrogels are critical for advanced bioelectronics and the repair of electroactive tissues. However, developing conductive hydrogels into complex biomimetic shapes with good flexibility and bioactivity poses a major biofabrication challenge. This study utilizes dual-component hydrogel inks based on alginate incorporating conductive fCNT (acid-functionalized carbon nanotube) nanofillers, with the composite gel exhibiting an electrical conductivity of 6.6 ± 0.5 mS cm-1 at 2 mg ml-1 fCNT loading. Owing to their good combination of electrical conductivity and mechanical properties, the (three-dimensional) 3D-printed gels were successfully applied as strain sensors to sense subtle human motions, such as finger and elbow bending. Bilayered hydrogels prepared through four-dimensional (4D) printing exhibited programmable shape changes owing to differential swelling post-printing to yield nerve guidance conduits (NGCs) of intricate and tissue-adaptable designs, such as single and multichannel and bifurcated designs, based on accurate prediction by finite element analysis. The proliferation of neural cells was enhanced on the fCNT-gel compared to the neat gel. Sutureless deployment and enhanced peripheral nerve regeneration were established for the fCNT-gel in a rat sciatic nerve injury model. Overall, this work presents the fabrication of 4D-printed multifunctional conductive hydrogels, which can find diverse applications ranging from implantable nerve conduits to strain sensing.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.