{"title":"Synthesis and Characterization of Magnetic Stearic Acid Modified Sulfated Alginate and Investigation of the Cytotoxicity and Apoptosis in MCF-7 Cell Line","authors":"Birnur Akkaya, Serkan Kapancık, Recep Akkaya, Nurgül Sarıaydın","doi":"10.1007/s10924-024-03400-8","DOIUrl":"https://doi.org/10.1007/s10924-024-03400-8","url":null,"abstract":"<p>Breast cancer is the type of cancer that causes death in the first place among women in 2022, with a rate of 6.9%. According to the data of the World Health Organization in 2024, 665,684 women died due to breast cancer in 2022. Cancer metastasis is the main reason why people die from cancer. Since changes in proliferation-related gene expression and protein levels that occur as a result of mutations that cause metastasis make cancerous cells more proliferatively aggressive, treatment opportunities remain limited. Sulfatide has the potential to be a p-selectin inhibitor, as it is a p-selectin-binding molecule that has an antimetastatic effect. Sulfatide mimicking material has previously been studied by sulfonation and acylation of chitosan. It was evaluated as an anticancer drug carrier because it did not have cytotoxic effects against cancer cells. In this study, a sulfatide-like molecule was obtained using alginate and it was found to have a cytotoxic effect against cancer cells. The compound that is newly synthesized in the presented article is an alternative to the group of sulfatide-like compounds that we have previously studied, which are thought to have an antimetastatic effect. The molecular disruption of the apoptosis mechanism in cancerous tissues leads to the resistance of cancerous cells to apoptosis, which in turn promotes cancer progression. For this reason, cancer studies focus on cell death, that is, apoptosis, as well as on cell proliferation. This study is the first to combine the simultaneous sulfation and acylation of alginate with the addition of magnetism, despite previous research on the sulfation, acylation, and alkylation of alginate (M-SA-SULF-A) and analysed it by scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy, a vibrating sample magnetometer (VSM) and a mastersizer. Then we aim to examine the effect of newly modified magnetic stearic acid on apoptosis in MCF-7 cells by looking at the expressions of apoptosis-and metastatasis related genes through an array kit, and to reveal the molecular pathways that cause modified alginate’s anti-cancer activity. Thus, we determined that magnetic stearic acid modified sulfated alginate may be an anti-cancer agent by regulating the expression of genes associated with apoptosis.</p>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. J. Gazquez-Navarro, D. Garcia-Sanoguera, R. Balart, D. Garcia-Garcia, J. Gomez-Caturla
{"title":"A New Use of Polysorbate-Type Nonionic Surfactants as Plasticizers for Highly Flexible Poly(lactide) Formulations","authors":"J. J. Gazquez-Navarro, D. Garcia-Sanoguera, R. Balart, D. Garcia-Garcia, J. Gomez-Caturla","doi":"10.1007/s10924-024-03396-1","DOIUrl":"https://doi.org/10.1007/s10924-024-03396-1","url":null,"abstract":"<p>Polysorbates are non-ionic amphiphilic organic compounds, widely used as surfactants. They have a molecular weight in the 1200–1400 g mol<sup>−1</sup> range, so they are on the borderline between monomeric and polymeric plasticizers. Therefore, they can potentially provide the benefits of both plasticizer types. In this work, polyethylene glycol sorbitan monolaurate (Tween<sup>®</sup> 20), and polyethylene glycol monooleate (Tween<sup>®</sup> 80) are proposed as environmentally friendly plasticizers for PLA with enhanced ductile properties. The addition of 20 wt% of polysorbates into a PLA matrix, leads to a noticeable increase in elongation at break, from 4.0% (neat PLA) up to values around 180%. The plasticization efficiency was assessed by the decrease in the glass transition temperature (<i>T</i><sub><i>g</i></sub>), from 61.0 ºC (neat PLA) down to such los values of 29.5 ºC, and 36.6 ºC, for plasticized PLA formulations with 30 wt% Tween<sup>®</sup> 20, and 30 wt% Tween<sup>®</sup> 80, respectively. Moreover, due to the high molecular weight of polysorbates, they are not highly volatile, which allows processing PLA by conventional extrusion and injection molding without plasticizer volatilization. This works widens the industrial applications of polysorbates, as cost-effective, highly efficient and environmentally friendly plasticizers for PLA with enhanced toughness.</p>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Preparation of Zirconium Phosphate/Carboxymethyl Cellulose Composite Hydrogel for Cu2+ Removal","authors":"Xue-Li Liu, Zhi-Peng Xie, Chun-Feng Zhu","doi":"10.1007/s10924-024-03387-2","DOIUrl":"https://doi.org/10.1007/s10924-024-03387-2","url":null,"abstract":"<p>Zirconium phosphate (α-ZrP)/carboxymethyl cellulose (CMC) composite hydrogels were prepared through graft copolymerization by the easily scaling-up method. The α-ZrP/CMC hydrogels were characterized through FI-IR, SEM (EDS-SEM), XRD, TGA, BET, swelling and zeta potential measurements. The adsorption of Cu<sup>2+</sup> by α-ZrP/CMC hydrogels in aqueous solutions was also studied. The results show that α-ZrP/CMC hydrogels have great adsorption capacity for Cu<sup>2+</sup>. The analysis results indicated that the adsorption mechanisms of α-ZrP/CMC hydrogel on Cu<sup>2+</sup> are mainly through the electrostatic interaction. The adsorption process conforms to the Langmuir model (R<sup>2</sup> = 0.9953) and Quasi-second order kinetic model (R<sup>2</sup> = 1). Under the experimental conditions explored, the optimal amount of α-ZrP and the DS of CMC are chosen as 0.5 wt% and 1.2, and the adsorption capacity of ZrP-0.5%-CMC-1.2 hydrogel for Cu<sup>2+</sup> is 121.21 mg/g. The adsorption isotherms, adsorption kinetics, and thermodynamics studies were also conducted to investigate the adsorption mechanism. Therefore, α-ZrP/CMC hydrogels present excellent adsorption efficiency, shows the potential application in future treatment of Cu<sup>2+</sup> wastewater.</p>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruihong Wu, Ali H. Jawad, Elmira Kashi, Salis Auwal Musa, Zeid A. ALOthman
{"title":"Zwitterion Adsorbent of Crosslinked Chitosan-Benzil/Algae/Coal Fly Ash for Anionic (Remazol Brilliant Blue R) and Cationic (Thionine) Dyes Removal: Box–Behnken Design Optimization","authors":"Ruihong Wu, Ali H. Jawad, Elmira Kashi, Salis Auwal Musa, Zeid A. ALOthman","doi":"10.1007/s10924-024-03388-1","DOIUrl":"https://doi.org/10.1007/s10924-024-03388-1","url":null,"abstract":"<p>In this work, a zwitterion adsorbent which consists of crosslinked chitosan-benzil/algae/coal fly ash (CS-BZ/Alg/FA) was developed for the removal of two structurally different anionic dye (remazol brilliant blue R (RBBR)) and a cationic dye (thionine (THN)). The physicochemical characteristics of CS-BZ/Alg/FA were investigated by several analytical techniques including specific surface area, XRD, FTIR, FESEM and EDX analyses. Moreover, response surface methodology and Box–Behnken design (RSM–BBD) was adopted as a statistical tool to optimize the adsorption operational parameters for THN and RBBR dyes removal. Thus, the optimal adsorption conditions were determined as follows: CS-BZ/Alg/FA dose of 0.1 g/100 mL, solution pH 10 for THN, and solution pH 4 for RBBR. Adsorption equilibrium isotherm data for RBBR and THN dyes by CS-BZ/Alg/FA were well described by Freundlich (multilayer adsorption) and Langmuir (monolayer adsorption) isotherm models respectively. Thus, the maximum adsorption capacities of CS-BZ/Alg/FA towards THN and RBBR were found to be 69.0 mg/g and 259.9 mg/g, respectively at 25 °C. Moreover, the pseudo second order model accurately represents the kinetic data for the adsorption of both THN and RBBR dyes. The adsorption thermodynamic functions indicate the adsorption process of THN and RBBR was spontaneous and endothermic in nature. Ultimately, this research presents the CS-BZ/Alg/FA as an eco-friendly amphoteric adsorbent with preferable capability for capturing anionic and cationic dyes from aqueous environment.</p>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Almas Ishaque, Avadhesh Kumar, Mehtab Parveen, Nursabah Sarikavakli, Shahab A. A. Nami
{"title":"Sustained Ampicillin Loading and Releasing Ability of Novel In-Situ Ca2+ Functionalized Ternary GO/PVP/CMC Nanocomposite Hydrogel","authors":"Almas Ishaque, Avadhesh Kumar, Mehtab Parveen, Nursabah Sarikavakli, Shahab A. A. Nami","doi":"10.1007/s10924-024-03371-w","DOIUrl":"https://doi.org/10.1007/s10924-024-03371-w","url":null,"abstract":"<p>A novel pH sensitive antibiotic carrier hydrogel was synthesized having sustained drug releasing capabilities. The in-situ polymerization of Graphene oxide (GO), Polyvinyl pyrrolidone (PVP), and Carboxymethyl cellulose (CMC) of varying stoichiometry having Ca<sup>2+</sup> as a linker yielded ternary nanocomposite hydrogels GO/PVP/CMC-II and GO/PVP/CMC-III. The physicochemical, structural, morphological and swelling properties of the binary nanocomposite GO/PVP and ternary nanocomposite hydrogels, GO/PVP/CMC were investigated using FTIR, XRD, SEM, TEM, TGA and DTA. FTIR and XRD confirm successive formation of ternary hydrogels. The hydrogels swelling studies at various pH levels viz. 4.5, 7 and 9.2, show that the swelling ability can be proportionally correlated with CMC concentration. To ensure the efficacy of this innovative hydrogel drug release application, an in vitro Ampicillin loading and release efficiency experiment at pH 7.2 (close to blood pH 7.3–7.5) was performed. Ternary hydrogels GO/PVP/CMC-II and GO/PVP/CMC-III exhibited sustained drug loading and release kinetics (72 h).</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cellulose-Based Aerogels for Sustainable Dye Removal: Advances and Prospects","authors":"Alireza Ashori, Elahe Chiani, Soheila Shokrollahzadeh, Meysam Madadi, Fubao Sun, Xueming Zhang","doi":"10.1007/s10924-024-03394-3","DOIUrl":"https://doi.org/10.1007/s10924-024-03394-3","url":null,"abstract":"<p>Dye pollution in wastewater is a persistent environmental challenge, with synthetic dyes posing significant threats to aquatic ecosystems and human health. This review article examines the potential of cellulose-based aerogels as a sustainable solution for removing dyes from wastewater. Cellulose aerogels, owing to their high porosity, large surface area, and tailorable surface chemistry, have emerged as promising adsorbent materials for dye remediation. The review outlines the sources and classification of dyes, highlighting their environmental and health implications. It then provides a comprehensive overview of various dye removal methodologies, critically analyzing their advantages and limitations and underscoring the need for effective and sustainable treatment technologies. The preparation of cellulose aerogels, including natural, regenerated, and cellulose derivative variants, is discussed, along with surface modification strategies to enhance their dye adsorption capabilities. Detailed characterization techniques and the assessment of dye removal performance are also covered. The review concludes by synthesizing the key findings and outlining recommendations for future research, such as developing innovative cellulose aerogel formulations, conducting life-cycle assessments, and fostering collaborative efforts to accelerate the adoption of these technologies in wastewater treatment applications. This review aims to contribute to the advancement of sustainable and efficient dye removal solutions using cellulose-based aerogels.</p>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengyao Li, Hongying Hao, Huiqiang Zeng, Manyi Yin, Yinfeng Xia, Kun Du, Ziqiang Shao
{"title":"Carboxymethyl Inulin Modified Chitosan Composites for Cu (II) Removal in Aqueous Solution: Synthesis, Influencing Factors and Adsorption Mechanism","authors":"Mengyao Li, Hongying Hao, Huiqiang Zeng, Manyi Yin, Yinfeng Xia, Kun Du, Ziqiang Shao","doi":"10.1007/s10924-024-03381-8","DOIUrl":"https://doi.org/10.1007/s10924-024-03381-8","url":null,"abstract":"<p>A new biomass-based carboxymethyl inulin modified chitosan material was designed and synthesized as an adsorbent for the Cu (II) removal from aqueous solutions, in which carboxymethyl inulin (CMI) with specific degree of substitution (DS) was prepared by optimal three steps alkalization-etherification processes, and then moderately crosslinked with chitosan by DMTMM. The structure and morphology of CMI-CS were characterized using fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), brunauer–emmett–teller (BET) and thermogravimetric analysis (TGA) analyses. The effects of CMI dosage, adsorption time, adsorption temperature, pH and initial Cu (II) concentration on the adsorption capability of CMI-CS to Cu (II) were investigated. The adsorption capacity of the adsorbent for Cu (II) was 49.4 mg/g under the conditions of CMI and CS mass ratio 3:2, pH 6, and adsorption time for 90 min. Its adsorption kinetics fitted the pseudo-second-order model, and adsorption isotherms followed by the Freundlich and the Temkin models well. XPS, FTIR, and SEM were used to explore the adsorption mechanism. The results demonstrated chemisorption and physisorption coexist in the adsorption process. The nitrogen-containing groups and oxygen-containing functional groups of CMI-CS adsorbent participated in the adsorption of Cu (II) through electrostatic interaction and chelation. Based on the above traits, the biomass-based adsorbent shows promising application in wastewater treatment.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Folate Receptor-Targeted Camptothecin-Loaded PLGA-Glutenin Nanoparticles for Effective Breast cancer Treatment","authors":"Raja Rajeswari Rajeshkumar, Theivendren Panneerselvam, Parasuraman Pavadai, Sureshbabu Ram Kumar Pandian, Alagarsamy Santhana Krishna Kumar, Murugesan Sankaranarayan, Shanmugampillai Jeyarajaguru Kabilan, Selvaraj Kunjiappan","doi":"10.1007/s10924-024-03391-6","DOIUrl":"https://doi.org/10.1007/s10924-024-03391-6","url":null,"abstract":"<p>The combination of natural and synthetic polymers for nanomedicine development had many advantages, including less toxicity, biocompatibility, prolonged circulation, higher stability, and ease of surface modification. Here, a novel folic acid-conjugated Camptothecin-loaded-poly (lactic-co-glycolic) acid-glutenin nanoparticles (FA-CPT-PLGA-Glu NPs) was fabricated to treat breast cancer. FA-CPT-PLGA-Glu NPs target breast cancer cells via upregulated folate receptors and delivered their toxic payloads without disrupting healthy cells. First, CPT-loaded PLGA NPs were created using a modified emulsification/evaporation technique. Second, Glu-based CPT-PLGA NPs were synthesized using a layer-by-layer assembly, and their physiochemical properties were validated. CPT encapsulation efficiency and loading capacity into PLGA-Glu NPs were 74.95 ± 1.34% and 4.78 ± 1.08%, respectively. CPT-PLGA-Glu NPs exhibited sustained and controlled release of loaded-CPT from NPs, and the highest content was released in an acidic environment (pH 5.3), which will be advantageous for cancer treatment. Later, FA-CPT-PLGA-Glu NPs were synthesized by simple conjugation chemistry. The fabricated FA-CPT-PLGA-Glu NPs were around 100 nm in size, with a spherical form and crystalline nature. FA-CPT-PLGA-Glu NPs show strong cytotoxicity activity, and its IC<sub>50</sub> value was 16.33 µg × mL<sup>− 1</sup> against breast cancer cell line (MCF-7). This folate-receptor-targeted NPs are more effectively internalized into MCF-7 cells, causing ROS generation, cell growth inhibition, and apoptosis. The activity of caspase-3 and − 9 causes MCF-7 cells apoptosis by internalized CPT. Further, internalized CPT induces potential loss of mitochondrial transmembrane and damages the nuclear integrity of the cancer cells. These results showed that the FA-CPT-PLGA-Glu NPs target upregulated folate receptors on the surface of MCF-7 cells.</p><p>.</p>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Reza Salmani, Fazelehsadat Shirazi, Kasra Goodarzi, Fatemeh Noormohammadi, Mohammad Nourany
{"title":"Improving Phase Compatibility of PLA-PCL Matrix-Droplet Blend Using CNC/PCL-PEG-PCL Triblock Copolymer to Prepare Porous 3D Osteoinductive Scaffolds","authors":"Mohammad Reza Salmani, Fazelehsadat Shirazi, Kasra Goodarzi, Fatemeh Noormohammadi, Mohammad Nourany","doi":"10.1007/s10924-024-03392-5","DOIUrl":"https://doi.org/10.1007/s10924-024-03392-5","url":null,"abstract":"<p>Attempts were made to produce osteoinductive three- dimensional (3D) porous scaffolds with interconnected pores. Among the synthetic polymers, poly (ε- caprolactone) (PCL) was proven to be highly biocompatible and osteoinductive. However, it suffers from shrinkage due to high crystallinity and fast crystal growth. Here, we used polylactic acid, which is a rigid, low- crystalline and biocompatible polymer, as the major phase blended with PCL comprising the minor phase. However, these two polymers are highly incompatible and the PCL minor phase tend to form large droplets, distributing it unevenly throughout the continuous phase. Here, we used cellulose nanocrystals (CNCs), as a hydrophilic and osteoinductive nanoparticle, to suppress coalescence of PCL droplets and a tri-block copolymer of PCL-PEG-PCL (BCP) to reduce the interfacial tension of the two phases. 3D foams were prepared using thermally-induced phase separation and salt leaching and the porosity and pore size was tuned using CNC and BCP. The biocompatibility of the 3D scaffolds was evaluated by MG63 cell lines and the results indicated high biocompatibility. The scaffolds were also quite successful at inducing the osteogenesis of hMSCs. The specimen containing 10% BCP and 1.0% CNC had the highest calcium deposition with the highest expression of bone- specific genes.</p>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Magnetic and Amino Grafted Chitosan-Based Composite for Efficient Adsorption and Reduction of Cr(VI): Performance and Removal Mechanism","authors":"Lixin Huang, Mingen Li, Haiying Lin, Qingge Feng, Qiuyan Hu, Zixuan Chen, Jiatong Lv, Jia Lin, Lianghong Li, Xianghua Wu","doi":"10.1007/s10924-024-03390-7","DOIUrl":"https://doi.org/10.1007/s10924-024-03390-7","url":null,"abstract":"<p>The discharge of industrial wastewater containing Cr(VI) can severely damage the surrounding environment and cause serious threats to human health. Exploring high-performance adsorbents to rapidly remove Cr(VI) could be a popular idea for solving this problem. Herein, a composite (Fe<sub>3</sub>O<sub>4</sub>@CS-APTMS) was fabricated by using Fe<sub>3</sub>O<sub>4</sub> as the core coated with chitosan and then functionalized with APTMS for simultaneous Cr(VI) reduction and adsorption. Although the APTMS grafting and the cross-linking reaction covered the Fe<sub>3</sub>O<sub>4</sub>@CS-APTMS surface with more obvious folding and wrinkling and blocked the interior pores, the graft-rich amino functional groups could effectively enhance the acidic pH adaptability and the performance of Fe<sub>3</sub>O<sub>4</sub>@CS-APTMS to achieve an adsorption capacity of 269.54 mg g<sup>−1</sup> at 298 K and pH 2.0. The primary reaction mechanism involving electrostatic attraction, reduction, and chelation of Cr(VI) has been thoroughly investigated through FTIR, XPS, and DFT analyses. Moreover, the concentration of Cr(VI) (32 mg L<sup>−1</sup>) in artificial electroplating wastewater substantially decreased to 0.09 mg L<sup>−1</sup> post-treatment, significantly below China’s discharge standard (0.2 mg L<sup>−1</sup>). Furthermore, the composite demonstrated excellent resistance to disturbances and recyclability. Thus, the synthesized composite emerges as a promising alternative material for efficiently treating chromium-containing electroplating wastewater, underscoring the importance of amino-modified materials in Cr(VI) reduction and detoxification in aquatic environments.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142214973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}