Journal of Polymers and the Environment最新文献

筛选
英文 中文
Graphene Derivatives Functionalized Polycaprolactone/Gelatin Electrospun Nanofibrous Membrane Through Mussel-Inspired Polydopamine: Multifunctional Scaffold with High Potential for Nerve Tissue Engineering 石墨烯衍生物功能化聚己内酯/明胶电纺纳米纤维膜:极具神经组织工程潜力的多功能支架
IF 4.7 3区 工程技术
Journal of Polymers and the Environment Pub Date : 2024-09-25 DOI: 10.1007/s10924-024-03407-1
Negin Borzooee Moghadam, Manizheh Avatefi, Mehrdad Shavali, Matin Mahmoudifard
{"title":"Graphene Derivatives Functionalized Polycaprolactone/Gelatin Electrospun Nanofibrous Membrane Through Mussel-Inspired Polydopamine: Multifunctional Scaffold with High Potential for Nerve Tissue Engineering","authors":"Negin Borzooee Moghadam, Manizheh Avatefi, Mehrdad Shavali, Matin Mahmoudifard","doi":"10.1007/s10924-024-03407-1","DOIUrl":"10.1007/s10924-024-03407-1","url":null,"abstract":"<div><p>Injuries to the nervous system continue to be a problem on a global scale due to the limited capacity of the nervous system to self-repair. Today, electrospun nanofibrous membranes (NFMs) are widely used in nerve tissue engineering due to their advanced properties such as low-cost, being uncomplicated, the potential to give direction to neurite outgrowth, and their highly manageable properties. Recently, the fabrication of functionalized NFMs has been proposed as a viable strategy to help restore the function of the nervous system. This would be accomplished by creating the ideal microenvironment that could mimic the features of the extracellular matrix of neural cells such as conductivity. The main objective of this project was to construct a biocompatible and electro-conductive NFM with the potential to promote proliferation and induce differentiation into neuron-like cells in PC12 cells. Basic PCL and gelatin based scaffolds seem to lack the highly desired properties of cellular implants for neural tissue engineering such as high biocompatibility, tailored biodegradability, high antibacterial, and ROS scavenging properties. For this purpose, Poly(ε-caprolactone)/gelatin (PG) electrospun nanofibrous scaffolds were coated with GO and GQD through Mussel-inspired polydopamine (DOPA) (PG-DOPA-GO and PG-DOPA-GQD). There is a dearth of research on the application of GQD in neural tissue engineering, and there is no comparative assessment of GO and GQD’s effectiveness when coated through DOPA on the surface of PG NFM, in PC12 differentiation. For the first time, the outcomes of these NFMs, as neural tissue engineering scaffolds are assessed and contrasted from the standpoints of surface, structure, mechanical, and biological aspects. Apart from that, as far as we know, this is the first work using graphene-based nanomaterials via polydopamine mediated coatings in PG NFMs for nerve tissue engineering. The NFMs structural analysis through SEM, FTIR, and EDAX determined that the nanofibrous membranes are porous and truly coated by DOPA, GO, and GQD. It was also demonstrated that PG-DOPA-GO and PG-DOPA-GQD NFMs are highly conductive, hemo-compatible, antibacterial, possessing good hydrophilicity. At the same time, they are displayed to be biodegradable with adjustable structural integrity and stiffness. The NFMs potential to induce the expression of neuron-like differentiation factors in the PC12 cells cultured on the scaffold was determined by introducing neurofilament-200 (NF200) and Nestin antibodies after 7 days’ cell ceding. Simultaneously, qRT-PCR analysis confirmed that the NF-200 and Nestin genes, both among the important genes regulating neural differentiation, are highly expressed when the conductivity and biocompatibility of the scaffold are increased through GO coating. Overall, the PG-DOPA-GO NFM was determined to outperform the other scaffolds regarding increased proliferation, viability, and neuron-like differentiation-related facto","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 12","pages":"6698 - 6724"},"PeriodicalIF":4.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volatile Compounds and Off-odors Analysis of Recycled PLA for Packaging Applications: An Essential Factor for Ensuring Food Safety and Quality 包装应用中回收聚乳酸的挥发性化合物和异味分析:确保食品安全和质量的关键因素
IF 4.7 3区 工程技术
Journal of Polymers and the Environment Pub Date : 2024-09-25 DOI: 10.1007/s10924-024-03409-z
Robert Paiva, Magdalena Wrona, Cristina Nerín, Georgiana-Luminita Gavril, Sandra Andrea Cruz
{"title":"Volatile Compounds and Off-odors Analysis of Recycled PLA for Packaging Applications: An Essential Factor for Ensuring Food Safety and Quality","authors":"Robert Paiva,&nbsp;Magdalena Wrona,&nbsp;Cristina Nerín,&nbsp;Georgiana-Luminita Gavril,&nbsp;Sandra Andrea Cruz","doi":"10.1007/s10924-024-03409-z","DOIUrl":"10.1007/s10924-024-03409-z","url":null,"abstract":"<div><p>Recent European guidelines support the use of recycled and biodegradable packaging for food applications. The approval of such packaging must not alter food’s taste or be harmful to health. In this work, PLA pellets were subjected to a post-consumer contamination procedure, washing process, and mechanical recycling, under common conditions of the recycling industry. HS-SPME-GC-MS and HS-SPME-GC-O-MS methods were used to detect volatile compounds and off-odor profiles. 33 different volatile compounds were identified in all samples. Intentionally added and non-intentionally added substances (IAS and NIAS) were identified, including benzaldehyde, benzyl alcohol, and dimethyl-1,4-dioxane-2,5-dione. The relationship between the formation of different NIAS and the PLA recycling process steps was determined. 14 different odor compounds such as benzyl alcohol, benzaldehyde, nonanal, decanal, dodecanal, 2,3-dimethylnaphthalene and 2,4-di-tert-butylphenol were detected and classified into 4 aroma groups (Toasted, Flower, Green and Chemical). The results obtained are essential for the food safety of recycled plastic material for food contact.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 12","pages":"6687 - 6697"},"PeriodicalIF":4.7,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Synthesis of Silver Nanoparticles Using Cyto-compatible Polymer Derivative of Tara Gum for Gold (III) ion Detection in Water Samples 利用塔拉胶的细胞相容性聚合物衍生物绿色合成银纳米粒子,用于检测水样中的金(III)离子
IF 4.7 3区 工程技术
Journal of Polymers and the Environment Pub Date : 2024-09-23 DOI: 10.1007/s10924-024-03393-4
Titilope John Jayeoye, Sudarshan Singh, Fredrick Nwude Eze, Oyenike Olatunji, Ilemobayo Oguntimehin, Andrew Aondoaver Tyopine, Oghale Beauty Odogiyon, Opeyemi Joshua Olatunji
{"title":"Green Synthesis of Silver Nanoparticles Using Cyto-compatible Polymer Derivative of Tara Gum for Gold (III) ion Detection in Water Samples","authors":"Titilope John Jayeoye,&nbsp;Sudarshan Singh,&nbsp;Fredrick Nwude Eze,&nbsp;Oyenike Olatunji,&nbsp;Ilemobayo Oguntimehin,&nbsp;Andrew Aondoaver Tyopine,&nbsp;Oghale Beauty Odogiyon,&nbsp;Opeyemi Joshua Olatunji","doi":"10.1007/s10924-024-03393-4","DOIUrl":"10.1007/s10924-024-03393-4","url":null,"abstract":"<div><p>Polymers blending has attracted significant interest in recent years owing to the possibility of synergistic interactions between blended materials which can be impressively beneficial over single substrates. Herein, a Tara gum derivative-(PVA-TG) blend was exploited as stabilizing agent for the synthesis of cyto-compatible PAPBA/(PVA-TG)/Ag, colloidal nanocomposite. Based on the in-situ oxidative polymerization strategy, 3-aminobenzene boronic acid (ABBA), was used for the reduction of silver salt, inside highly hydrophilic (PVA-TG) blend. As a result, AgNPs is formed, while ABBA, is oxidized to its conducting polymer conformation (PAPBA), all within the blended polymers solution. PAPBA/(PVA-TG)/Ag, showed dose-dependent cell viability with IC<sub>50</sub> of 3.9 µg/mL against human keratinocytes (HaCaT) cells, based on in vitro MTT assay, which attested to its cyto-compatibility. The material was fully characterized using various analytical equipment and was deployed for the detection of metal ion (Au<sup>3+</sup> ion) in solution. At the optimal detection conditions, absorbance ratios, (A<sub>560</sub>/A<sub>429</sub>) displayed linearity with Au<sup>3+</sup> concentrations from 0.10 to 10.0 &amp; 10.0–80.0 µM, with 28.5 nM detection limit (LOD). Further, the mechanistic basis of the detection strategy was proven to be based on galvanic replacement and was applied to Au<sup>3+</sup> detection/monitoring in environmental samples with reliable precision and accuracy (99.4–102.3%). In all, we have showcased an innovatively contrived synthesis strategy which can be of huge benefit in toxic metal ions monitoring in water samples.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 12","pages":"6667 - 6686"},"PeriodicalIF":4.7,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Degradation of Cationic Polyacrylamide Flocculants upon Contact with Metal Surfaces During Rheological Measurements 流变学测量中阳离子聚丙烯酰胺絮凝剂与金属表面接触时的降解过程
IF 4.7 3区 工程技术
Journal of Polymers and the Environment Pub Date : 2024-09-23 DOI: 10.1007/s10924-024-03369-4
N. Loukili, Ana Chitanu, L. Jossic, M. Karrouch, M. Oliveira, S. Guerin, Y. Fayolle, P. Ginisty, A. Magnin, Yahya Rharbi
{"title":"Degradation of Cationic Polyacrylamide Flocculants upon Contact with Metal Surfaces During Rheological Measurements","authors":"N. Loukili,&nbsp;Ana Chitanu,&nbsp;L. Jossic,&nbsp;M. Karrouch,&nbsp;M. Oliveira,&nbsp;S. Guerin,&nbsp;Y. Fayolle,&nbsp;P. Ginisty,&nbsp;A. Magnin,&nbsp;Yahya Rharbi","doi":"10.1007/s10924-024-03369-4","DOIUrl":"10.1007/s10924-024-03369-4","url":null,"abstract":"<div><p>This research shows that cationic polyacrylamide (CPAM) flocculants, widely used in wastewater treatment, are susceptible to degradation when in contact with various metallic surfaces. This is evidenced by the investigation of the evolution of CPAM’s rheological properties during degradation within metallic Couette tools, observing a transition from elastic to viscous behavior. The degradation is clearly evident on various metallic surfaces, while thermoplastic surfaces have significantly less effect on CPAM degradation. Key findings indicate that chemical interactions, rather than mechanical stress, are the primary cause of degradation, and this reaction is activated by temperature. Techniques such as Fourier Transform Infrared spectroscopy, Nuclear Magnetic Resonance analysis, and polyelectrolyte titration provided some initial understanding of this mechanism. This research offers valuable insights into CPAM’s interactions with metal surfaces, with important implications for environmental and industrial applications, and establishes the appropriate protocol for characterizing the intrinsic rheological properties of these materials.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 12","pages":"6636 - 6649"},"PeriodicalIF":4.7,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of Magnetic Ag3PO4/Fe3O4/Chitosan Polymer Composite with Enhanced Visible-light-driven Photocatalytic Activity for the Methylene Blue Dye Degradation 构建具有增强可见光驱动光催化活性的磁性 Ag3PO4/Fe3O4/Chitosan 聚合物,用于降解亚甲基蓝染料
IF 4.7 3区 工程技术
Journal of Polymers and the Environment Pub Date : 2024-09-23 DOI: 10.1007/s10924-024-03375-6
Annette Jayam Somasundaram, Elaiyappillai Elanthamilan, Sea-Fue Wang, I. Sharmila Lydia
{"title":"Construction of Magnetic Ag3PO4/Fe3O4/Chitosan Polymer Composite with Enhanced Visible-light-driven Photocatalytic Activity for the Methylene Blue Dye Degradation","authors":"Annette Jayam Somasundaram,&nbsp;Elaiyappillai Elanthamilan,&nbsp;Sea-Fue Wang,&nbsp;I. Sharmila Lydia","doi":"10.1007/s10924-024-03375-6","DOIUrl":"10.1007/s10924-024-03375-6","url":null,"abstract":"<div><p>The present study employed the simple co-precipitation approach followed by ultrasonication to generate a composite material consisting of magnetic Ag<sub>3</sub>PO<sub>4</sub>/Fe<sub>3</sub>O<sub>4</sub>/Chitosan(CS). The magnetic Ag<sub>3</sub>PO<sub>4</sub>/Fe<sub>3</sub>O<sub>4</sub>/CS composite was characterized using the Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and X-ray photoelectron spectroscopy (XPS) methods. The magnetic composite was evaluated as a photocatalyst for methylene blue (MB) degradation under visible light irradiation. The investigation also focused on optimizing the photocatalyst dose, concentration fluctuation, and stability to enhance the reaction conditions for dye degradation. The magnetic Ag<sub>3</sub>PO<sub>4</sub>/Fe<sub>3</sub>O<sub>4</sub>/CS composite exhibited robust photocatalytic activity for the degradation of MB, with a removal efficiency of 95%. Furthermore, the recyclability of the magnetic composite was evaluated for five successive cycles and the degradation efficiency was reduced to 85% only, demonstrating its robustness. The composite demonstrated exceptional recyclability and reusability while experiencing no degradation in catalytic activity. The results of this study will aid in the advancement of environmentally friendly nanotechnology by enabling the production of easily separable magnetic Ag<sub>3</sub>PO<sub>4</sub>/Fe<sub>3</sub>O<sub>4</sub>/CS composite as heterogeneous catalysts.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 12","pages":"6650 - 6666"},"PeriodicalIF":4.7,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorization of Spent Lignocellulosic Substrate of Edible Mushrooms into Cellulose Nanofibers for Bionanocomposites Production 将食用菌废弃木质纤维素基质转化为纤维素纳米纤维用于仿生复合材料生产的价值提升
IF 4.7 3区 工程技术
Journal of Polymers and the Environment Pub Date : 2024-09-21 DOI: 10.1007/s10924-024-03378-3
Denis Mihaela Panaitescu, Mădălina Oprea, Adriana Nicoleta Frone, Bogdan Trică, Ioana Popa-Tudor, Marius Ghiurea, Cristian-Andi Nicolae, Augusta Raluca Gabor, Gabriela Mădălina Oprică, Cătălina Diana Uşurelu, Celina Maria Damian, Diana Constantinescu-Aruxandei, Florin Oancea
{"title":"Valorization of Spent Lignocellulosic Substrate of Edible Mushrooms into Cellulose Nanofibers for Bionanocomposites Production","authors":"Denis Mihaela Panaitescu,&nbsp;Mădălina Oprea,&nbsp;Adriana Nicoleta Frone,&nbsp;Bogdan Trică,&nbsp;Ioana Popa-Tudor,&nbsp;Marius Ghiurea,&nbsp;Cristian-Andi Nicolae,&nbsp;Augusta Raluca Gabor,&nbsp;Gabriela Mădălina Oprică,&nbsp;Cătălina Diana Uşurelu,&nbsp;Celina Maria Damian,&nbsp;Diana Constantinescu-Aruxandei,&nbsp;Florin Oancea","doi":"10.1007/s10924-024-03378-3","DOIUrl":"10.1007/s10924-024-03378-3","url":null,"abstract":"<div><p>At the present, the spent <i>Pleurotus</i> substrate (SPS), which is a lignocellulosic waste from the industrial production of mushrooms, is poorly valorized and mostly landfilled. Considering the large amount of SPS that is required to produce one kilo of mushrooms and its hazard to the environment if not properly disposed of, finding means to valorize this waste is of utmost importance. This work proposes the valorization of SPS through the extraction of cellulose nanofibers (NC-SPS), by applying several bleaching and alkaline hydrolysis treatments followed by microfluidization. Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction (XRD), and thermogravimetric analysis (TGA) of NC-SPS showed that most of the lignin, hemicelluloses, and other impurities were removed after the treatments of SPS. The transmission electron microscopy analysis of NC-SPS showed the presence of nanofibers with an average width of 24.5 ± 14.9 nm, XRD indicated an increase in crystallinity from 60% for SPS to 71% for NC-SPS, while TGA showed that the onset degradation temperature increased with about 43 °C after the treatments. The new NC-SPS are similar to the nanocellulose extracted from wood and can replace it in various applications. In this work, NC-SPS were tested as modifiers for poly(lactic acid) (PLA) leading to an increase in its crystallinity, Young’s modulus (of up to 57%), and storage modulus, while preserving its thermal stability and transparency. These results showed that NC-SPS acted as good reinforcing agents for PLA, and more applications are foreseen.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 12","pages":"6618 - 6635"},"PeriodicalIF":4.7,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10924-024-03378-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eco-friendly Development of New Biodegradable and Renewable Polymers Based on Di(meth)Acrylated and Acrylamidated Monomers Derived from Limonene Dioxide 基于二(甲基)丙烯化和丙烯酰胺化柠檬二烯单体的新型可生物降解和可再生聚合物的生态友好型开发
IF 4.7 3区 工程技术
Journal of Polymers and the Environment Pub Date : 2024-09-19 DOI: 10.1007/s10924-024-03406-2
Thainá Araruna, Jéssica F. Sousa, Ricardo H. Kruger, Angelo H. L. Machado, Fabricio Machado
{"title":"Eco-friendly Development of New Biodegradable and Renewable Polymers Based on Di(meth)Acrylated and Acrylamidated Monomers Derived from Limonene Dioxide","authors":"Thainá Araruna,&nbsp;Jéssica F. Sousa,&nbsp;Ricardo H. Kruger,&nbsp;Angelo H. L. Machado,&nbsp;Fabricio Machado","doi":"10.1007/s10924-024-03406-2","DOIUrl":"10.1007/s10924-024-03406-2","url":null,"abstract":"<div><p>In this work, new biobased polymeric materials were synthesized using interesting limonene-based multifunctional monomers as building blocks: the tetrafunctional 2,8-dihydroxy-1,9-diacrylate and 2,8-dihydroxy-1,9-dimethacrylate, and the trifunctional 2-hydroxy-1-acrylamide. These monomers were prepared by the addition reaction between the diepoxidized limonene and (meth)acrylic acid or <i>N</i>-hydroxyethyl acrylamide. The complete conversion of unsaturations of limonene into epoxides, as well as the formation of monomers, were confirmed by Nuclear Magnetic Resonance analysis of proton and carbon (<sup>1</sup>H and <sup>13</sup>C NMR), Fourier Transform Infrared Spectroscopy (FTIR) and Mass Spectrometry (ESI-MS). The monomeric products were polymerized via miniemulsion polymerization with different initiators and co-stabilizers, resulting in new poly(meth)acrylates and polyamide polymers, which is a hydrogel. The polymers showed a high degree of crosslinking, porosity and good thermal properties characterized by Scanning Electron Microscopy (SEM), FTIR, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). In addition, the polymeric materials were tested to evaluate the formation of biofilm by the action of <i>Comomanoas sp</i>, whose results indicated that the synthesized new biobased polymers are susceptible to biodegradation.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 12","pages":"6576 - 6602"},"PeriodicalIF":4.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Bio-based Immiscible Blends of Poly(Butylene Succinate)/Poly(Ethylene Brassylate): Effect of PEB Loading on Their Rheological, Morphological, Thermal and Mechanical Properties 聚丁二酸丁二醇酯/聚丁二酸乙二醇酯的新型生物基不熔混合物:PEB 负载对其流变学、形态学、热学和力学性能的影响
IF 4.7 3区 工程技术
Journal of Polymers and the Environment Pub Date : 2024-09-19 DOI: 10.1007/s10924-024-03408-0
Wendy Sartillo-Bernal, Roberto Yáñez-Macías, Ricardo López-González, Jesús Francisco Lara-Sánchez, Javier Gudiño-Rivera, Heidi Andrea Fonseca-Florido
{"title":"Novel Bio-based Immiscible Blends of Poly(Butylene Succinate)/Poly(Ethylene Brassylate): Effect of PEB Loading on Their Rheological, Morphological, Thermal and Mechanical Properties","authors":"Wendy Sartillo-Bernal,&nbsp;Roberto Yáñez-Macías,&nbsp;Ricardo López-González,&nbsp;Jesús Francisco Lara-Sánchez,&nbsp;Javier Gudiño-Rivera,&nbsp;Heidi Andrea Fonseca-Florido","doi":"10.1007/s10924-024-03408-0","DOIUrl":"10.1007/s10924-024-03408-0","url":null,"abstract":"<div><p>Poly(butylene succinate) (PBS)/poly(ethylene brassylate) (PEB) biodegradable polyester blends were prepared at different PEB contents (5 to 30 wt%) to study the influence of the addition of PEB on the rheological behavior, morphology, thermal and mechanical properties of the blends. A gradual decrease in the shear viscosities and a greater shear thinning behavior were observed with increasing PEB content due to its low molecular weight, which acted as a lubricant or plasticizer, favoring the disentanglement of PBS chains. The blends with higher PEB content (25 and 30 wt%) had higher activation energy values and were more sensitive to temperature variations. The morphology showed good dispersion of PEB in the PBS matrix. Still, increased PEB content led to larger droplets, indicating immiscibility and poor adhesion between phases. PEB influenced both nucleation density and spherulite size of PBS/PEB blends, denoted by an increasing degree of crystallinity, a shift to low crystallization temperatures, and an improvement in the decomposition temperature according to their thermal properties. Low PEB contents (5 and 10%) increased PBS toughness due to the higher crystalline fraction and smaller crystal size of these blends.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 12","pages":"6603 - 6617"},"PeriodicalIF":4.7,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Innovative Nanocomposite Scaffolds Containing ZIF-8 Nanoparticles for Improving Wound Healing: A Review 用于改善伤口愈合的含 ZIF-8 纳米粒子的创新型纳米复合支架:综述
IF 4.7 3区 工程技术
Journal of Polymers and the Environment Pub Date : 2024-09-17 DOI: 10.1007/s10924-024-03398-z
Parinaz Nezhad-Mokhtari, Reza Rahbarghazi, Hamed Hamishehkar, Peyman Asadi, Morteza Milani
{"title":"Innovative Nanocomposite Scaffolds Containing ZIF-8 Nanoparticles for Improving Wound Healing: A Review","authors":"Parinaz Nezhad-Mokhtari,&nbsp;Reza Rahbarghazi,&nbsp;Hamed Hamishehkar,&nbsp;Peyman Asadi,&nbsp;Morteza Milani","doi":"10.1007/s10924-024-03398-z","DOIUrl":"10.1007/s10924-024-03398-z","url":null,"abstract":"<div><p>Multifunctional nanocomposite scaffolds, particularly those incorporating zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs), are emerging as effective solutions for skin and tissue injuries due to their biocompatibility, structural stability, and antibacterial properties. Integrating ZIF-8 NPs into polymeric scaffolds has significant potential for improved tissue regeneration. This review examines recent advancements in ZIF-8 NP-integrated scaffolds, including their applications in nanofibers, hydrogels, microneedles, and 3D-printable scaffolds. It details the synthesis methods, structural characteristics, and physicochemical properties of ZIF-8 NPs, highlighting their role in enhancing wound healing. The methodological basis of ZIF-8 in wound healing applications involves its synthesis and functionalization to enhance biocompatibility, enabling the creation of drug delivery systems that release bioactive agents in a controlled manner to promote tissue regeneration and accelerate wound healing. This review highlights the biocompatibility and biosafety of ZIF-8 NPs, noting their non-toxic nature within specific concentration ranges and their multifunctional capabilities, such as antibacterial and anti-inflammatory effects that facilitate angiogenesis and infection management. The review also addresses current challenges and future perspectives in developing and clinically translating ZIF-8-based nanocomposite scaffolds as next-generation materials for improving wound healing.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 12","pages":"6211 - 6234"},"PeriodicalIF":4.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design of Reduction-Responsive Copolymer-Based Nanoparticles for Enhanced Anticancer Drug Delivery 设计基于还原反应共聚物的纳米颗粒以增强抗癌药物的输送
IF 5.3 3区 工程技术
Journal of Polymers and the Environment Pub Date : 2024-09-16 DOI: 10.1007/s10924-024-03403-5
Haotian Hu, Hongjing Liu, Qingqing Li, Yongpeng Shen, Jialin Lu, Xiaowen Liu, Yu Tong, Yiheng Feng, Qingbo Xu, Yuxiang Tang, Jing Chu, Hang Hu, Tianyu Zhu, Defeng Xu
{"title":"Design of Reduction-Responsive Copolymer-Based Nanoparticles for Enhanced Anticancer Drug Delivery","authors":"Haotian Hu, Hongjing Liu, Qingqing Li, Yongpeng Shen, Jialin Lu, Xiaowen Liu, Yu Tong, Yiheng Feng, Qingbo Xu, Yuxiang Tang, Jing Chu, Hang Hu, Tianyu Zhu, Defeng Xu","doi":"10.1007/s10924-024-03403-5","DOIUrl":"https://doi.org/10.1007/s10924-024-03403-5","url":null,"abstract":"<p>Polymer-based nanoparticles with tumor-targeting ability, controlled-release properties and good biocompatibility are of great interest for anticancer drug delivery. Herein, two amphiphilic reduction-responsive copolymers self-assembled nanoparticles (mPEG-Cys-PCL and mPEG-Ami-PCL) along with their inert counterpart (mPEG-Hex-PCL) were prepared and evaluated. These three copolymers were synthesized by conjugating mPEG and PCL with different linkers and characterized by proton nuclear magnetic resonance spectrometry, flourier transform infrared spectrometry and gel permeation chromatography. Nile red (NR) was loaded into the prepared nanoparticles as a model drug to study the in vitro drug release, cellular uptake amount and biodistribution. Dimethylcurcumin (DMC) was loaded into the prepared nanoparticles to study the in vitro antitumor effect. The results show that NR@mPEG-Cys-PCL and NR@mPEG-Ami-PCL nanoparticles exhibit glutathione (GSH)-triggered drug release and NR@mPEG-Ami-PCL nanoparticles display enhanced GSH-responsiveness as compared to NR@mPEG-Cys-PCL. Moreover, NR@mPEG-Ami-PCL nanoparticles possess enhanced cellular uptake amount as compared to NR@mPEG-Hex-PCL and NR@mPEG-Cys-PCL nanoparticles. DMC@mPEG-Ami-PCL nanoparticles possess the highest in vitro antitumor effect. In biodistribution study, both NR@mPEG-Cys-PCL and NR@mPEG-Ami-PCL nanoparticles show reduced organ distribution and similar tumor accumulation as compared to NR@mPEG-Hex-PCL nanoparticles. The mPEG-Ami-PCL nanoparticles developed in this work show great potential for anticancer drug delivery.</p>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"189 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142263891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信