2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)最新文献

筛选
英文 中文
NBTI aware IG-FinFET based SRAM design using adaptable trip-point sensing technique 基于自适应跳闸点传感技术的NBTI感知IG-FinFET SRAM设计
2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) Pub Date : 2014-07-08 DOI: 10.1145/2770287.2770316
N. Yadav, Shikha Jain, M. Pattanaik, G. K. Sharma
{"title":"NBTI aware IG-FinFET based SRAM design using adaptable trip-point sensing technique","authors":"N. Yadav, Shikha Jain, M. Pattanaik, G. K. Sharma","doi":"10.1145/2770287.2770316","DOIUrl":"https://doi.org/10.1145/2770287.2770316","url":null,"abstract":"The progressive scaling demands effort from both the circuit and the device level, to cope with circuit variability and reliability issues. Advent of FinFET technology has suppresses the short channel effects and variability, but still suffers with self heating problem consequently increases temporal degradations. In this paper, we investigate severity of Negative Bias Temperature Instability (NBTI) and proposes an adaptable trip point sensing based compensation technique to satisfy performance metrics for NBTI aware Independent Gate (IG) FinFET based SRAM. Simulation results are carried out using HSPICE with PTM 32nm IG-FinFET technology demonstrate that threshold voltage deviates from its nominal value by 17%, causing 6% and 13% degradation in SNM and RNM, respectively under NBTI degradation at 125°C for 3 years. The proposed technique yields 42% reduced read failures under NBTI. Thus, proposed approach improves the stability of SRAM array during its operational life and hence, reliability of the system.","PeriodicalId":6519,"journal":{"name":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"40 1","pages":"122-128"},"PeriodicalIF":0.0,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82560451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A low contact resistance graphene field effect transistor with single-layer-channel and multi-layer-contact 一种具有单层通道和多层触点的低接触电阻石墨烯场效应晶体管
2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) Pub Date : 2014-07-08 DOI: 10.1145/2770287.2770321
Honghui Sun, Liang Fang, Yao Wang, Yaqing Chi, Rulin Liu
{"title":"A low contact resistance graphene field effect transistor with single-layer-channel and multi-layer-contact","authors":"Honghui Sun, Liang Fang, Yao Wang, Yaqing Chi, Rulin Liu","doi":"10.1145/2770287.2770321","DOIUrl":"https://doi.org/10.1145/2770287.2770321","url":null,"abstract":"As of today, the semiconductor industry has been looking for possible alternative materials of silicon, since the physical limitation of silicon-based devices, i.e., planar CMOS devices for most of the scenarios, is approaching soon. Among all the novel materials arising from the horizon, graphene is considered to be a very promising alternative for its unique electrical properties. Although all kinds of prospective electrical properties it has(e.g., high mobility), there are barriers for Graphene-based Field Effect Transistors (G-FETs) to overcome, in order to find its way to the substitution of Silicon Metal Oxide Semiconducting Field Effect Transistors (Si-MOSFETs). One of the most important engineering barriers to be overwhelmed is the parasitic parameters, among which the parasitic resistance is considered to be one of the most critical roadblock. Contact resistance in G-FETs is relatively high compared to that of conventional Si-MOSFETs. In this paper, we present an experimental demonstration of a new method to reduce the contact resistance in back gate G-FETs. In the proposed device structure, the source/drain regions are fabricated using multilayer graphene (MLG), thus the top and edge contacts are formed between the MLG and metal electrodes, while the conducting channel is still formed by using single-layer graphene (SLG). Due to the high conductivity of MLG and relative low conductivity of SLG, the contact resistance is reduced while the controllability of channel conductivity is preserved.","PeriodicalId":6519,"journal":{"name":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"35 1","pages":"139-144"},"PeriodicalIF":0.0,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84501394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Compression architecture for bit-write reduction in non-volatile memory technologies 非易失性存储器技术中减少位写入的压缩体系结构
2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) Pub Date : 2014-07-08 DOI: 10.1145/2770287.2770300
David B. Dgien, Poovaiah M. Palangappa, N. A. Hunter, Jiayin Li, K. Mohanram
{"title":"Compression architecture for bit-write reduction in non-volatile memory technologies","authors":"David B. Dgien, Poovaiah M. Palangappa, N. A. Hunter, Jiayin Li, K. Mohanram","doi":"10.1145/2770287.2770300","DOIUrl":"https://doi.org/10.1145/2770287.2770300","url":null,"abstract":"This paper proposes a compression-based architecture for bit-write reduction in emerging non-volatile memories (NVMs). Bit-write reduction has many practical benefits, including lower write latency, lower dynamic energy, and enhanced endurance. The proposed architecture, which is integrated into the NVM module, relies on (i) a frequent pattern compression-decompression engine, (ii) a comparator to reduce bit-writes, and (iii) an opportunistic wear leveler to spread writes and enhance memory endurance by reducing the peak bit-writes/cell. Trace-based simulations of the SPEC CPU2006 benchmarks show a 20× reduction in raw bit-writes on average, which corresponds to a 2-3× improvement over state-of-the-art methods and a 27% reduction in peak cell bit-writes.","PeriodicalId":6519,"journal":{"name":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"16 1","pages":"51-56"},"PeriodicalIF":0.0,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88915894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 48
HSPICE macromodel of a Programmable Metallization Cell (PMC) and its application to memory design 可编程金属化单元(PMC) HSPICE宏模型及其在存储器设计中的应用
2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) Pub Date : 2014-07-08 DOI: 10.1145/2770287.2770299
P. Junsangsri, F. Lombardi, Jie Han
{"title":"HSPICE macromodel of a Programmable Metallization Cell (PMC) and its application to memory design","authors":"P. Junsangsri, F. Lombardi, Jie Han","doi":"10.1145/2770287.2770299","DOIUrl":"https://doi.org/10.1145/2770287.2770299","url":null,"abstract":"This paper presents a new HSPICE macromodel of a Programmable Metallization Cell (PMC). The electrical characteristics of a PMC are simulated by using a geometric model that considers the vertical and lateral growth/dissolution of the metallic filament. The selection of the parameters is based on operational features, so the electrical characterization of the PMC is simple, easy to simulate and intuitive. The I-V and R-V plots of a PMC are generated at a very small error compared with experimental data; the proposed model also shows a small error for the relationship between the switching time and the pulse amplitude. The use of a PMC as resistive element in a crossbar memory is also presented; it is shown that a PMC-based crossbar offers substantial improvements over other resistive technologies.","PeriodicalId":6519,"journal":{"name":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"37 1","pages":"45-50"},"PeriodicalIF":0.0,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90102957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A new Tunnel-FET based RAM concept for ultra-low power applications 基于隧道场效应管的超低功耗RAM概念
2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) Pub Date : 2014-07-08 DOI: 10.1145/2770287.2770301
Mostafizur Rahman, Mingyu Li, Jiajun Shi, S. Khasanvis, C. A. Moritz
{"title":"A new Tunnel-FET based RAM concept for ultra-low power applications","authors":"Mostafizur Rahman, Mingyu Li, Jiajun Shi, S. Khasanvis, C. A. Moritz","doi":"10.1145/2770287.2770301","DOIUrl":"https://doi.org/10.1145/2770287.2770301","url":null,"abstract":"Maintaining power scaling trend and cell stability are critical challenges facing CMOS SRAM at sub-20nm technologies. These challenges primarily stem from the fundamental limitations of MOSFETs, and the rigid device doping and sizing requirements of underlying SRAM design. In this paper, we propose a new volatile memory architecture called Tunnel FET based Random Access Memory (TNRAM) that solves CMOS SRAM scaling challenges through integration of ultra-low power Tunnel FETs (TFETs) in a novel circuit style. It is designed to operate with single type uniform transistors to eliminate nanoscale device sizing requirements, and is customized to prevent SRAM like stability concerns. Analytical projections show significant power benefits; 6T-TNRAM has 4.38x lower active power and 174x lower leakage power over HP 6T-SRAM at 16nm technology node.","PeriodicalId":6519,"journal":{"name":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"127 1","pages":"57-58"},"PeriodicalIF":0.0,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74613559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Stochastic reliability evaluation of Sea-of-Tiles based on Double Gate controllable-polarity FETs 基于双栅可控极性场效应管的“瓦片之海”随机可靠性评估
2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) Pub Date : 2014-07-08 DOI: 10.1145/2770287.2770328
C. Dezan, Sara Zermani
{"title":"Stochastic reliability evaluation of Sea-of-Tiles based on Double Gate controllable-polarity FETs","authors":"C. Dezan, Sara Zermani","doi":"10.1145/2770287.2770328","DOIUrl":"https://doi.org/10.1145/2770287.2770328","url":null,"abstract":"In this paper, we introduce Bayesian network methods in order to evaluate the reliability of an application mapped onto the Sea-of-Tiles fabric based on DGFET nano devices. By using these methods, we show some interesting features of this kind of fabric at the functional level; the reliability of one tile of this fabric does not depend on the values of the control and the polarity gates, the diagnosis of a defective tile is possible with the input vector G = H = 1 (or G = H = 0) and with an observation on the value of the output F. Nevertheless, these features should also be checked at the device level to be more accurate. Bayesian networks give us the opportunity to estimate the reliability of a whole application mapped onto this fabric and to test the defective behaviour of tiles before the place-and-route procedure.","PeriodicalId":6519,"journal":{"name":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"28 1","pages":"169-170"},"PeriodicalIF":0.0,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88012640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Minimization of a reversible quantum 2n-to-n BCD priority encoder 可逆量子2n- n BCD优先编码器的最小化
2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) Pub Date : 2014-07-08 DOI: 10.1145/2770287.2770307
N. J. Lisa, H. Babu
{"title":"Minimization of a reversible quantum 2n-to-n BCD priority encoder","authors":"N. J. Lisa, H. Babu","doi":"10.1145/2770287.2770307","DOIUrl":"https://doi.org/10.1145/2770287.2770307","url":null,"abstract":"In this paper, we propose a reversible quantum 2n_ to-n BCD priority encoder circuit, where n is the number of output bits. The proposed design of the 2n-to-n BCD priority encoder circuit shows that it is composed of quantum circuits for OR operation and quantum NOT gates. We present an algorithm to construct a minimized quantum 2n-to-n BCD priority encoder circuit. A technique to calculate the quantum gate complexity of quantum circuits has also been proposed in the paper. Our circuit performs better than the existing ones in terms of quantum gates, delays, garbage outputs, constant inputs, quantum gate calculation complexity, area and power, e.g., the proposed quantum 8-to-3 BCD priority encoder circuit improves 41.25% on the number of quantum gates, 46.05% on delays, 48% on garbage outputs, 60% on constant inputs and 41.25% on area and power than the existing circuit. We also simulate the proposed quantum BCD priority encoder circuit using Microwind DSCH 2.7 which shows the functional correctness of the circuit.","PeriodicalId":6519,"journal":{"name":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"22 1","pages":"77-82"},"PeriodicalIF":0.0,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89975648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Applications of wavelength-fan-in for high-performance distributed processing systems 波长扇入在高性能分布式处理系统中的应用
2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) Pub Date : 2014-07-08 DOI: 10.1145/2770287.2770331
A. Tait, P. Prucnal
{"title":"Applications of wavelength-fan-in for high-performance distributed processing systems","authors":"A. Tait, P. Prucnal","doi":"10.1145/2770287.2770331","DOIUrl":"https://doi.org/10.1145/2770287.2770331","url":null,"abstract":"We discuss a novel application of a photonic circuit for integrated high-performance neuromorphic signal processing. Large fan-in is an especially important capability in distributed systems; however, electronic physics impose tradeoffs between bandwidth performance and fan-in degree. A circuit developed in the field of radio frequency (RF) photonics, wavelength(λ)-fan-in does not exhibit a corresponding tradeoff and can circumvent prior challenges to fan-in in optical distributed processing applications.","PeriodicalId":6519,"journal":{"name":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"3 1","pages":"177-178"},"PeriodicalIF":0.0,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75687287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Energy effective 3D stacked hybrid NEMFET-CMOS caches 节能3D堆叠混合NEMFET-CMOS缓存
2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) Pub Date : 2014-07-08 DOI: 10.1145/2770287.2770324
M. Lefter, M. Enachescu, G. Voicu, S. Cotofana
{"title":"Energy effective 3D stacked hybrid NEMFET-CMOS caches","authors":"M. Lefter, M. Enachescu, G. Voicu, S. Cotofana","doi":"10.1145/2770287.2770324","DOIUrl":"https://doi.org/10.1145/2770287.2770324","url":null,"abstract":"In this paper we propose to utilise 3D-stacked hybrid memories as alternative to traditional CMOS SRAMs in L1 and L2 cache implementations and analyse the potential implications of this approach on the processor performance, measured in terms of Instructions-per-Cycle (IPC) and energy consumption. The 3D hybrid memory cell relies on: (i) a Short Circuit Current Free Nano-Electro-Mechanical Field Effect Transistor (SCCF NEMFET) based inverter for data storage; and (ii) adjacent CMOS-based logic for read/write operations and data preservation. We compare 3D Stacked Hybrid NEMFET-CMOS Caches (3DS-HNCC) of various capacities against state of the art 45 nm low power CMOS SRAM counterparts (2D-CC). All the proposed implementations provide two orders of magnitude static energy reduction (due to NEMFET's extremely low OFF current), a slightly increased dynamic energy consumption, while requiring an approximately 55% larger footprint. The read access time is equivalent, while for write operations it is with about 3 ns higher, as it is dominated by the mechanical movement of the NEMFET's suspended gate. In order to determine if the write latency overhead inflicts any performance penalty, we consider as evaluation vehicle a state of the art mobile out-of-order processor core equipped with 32-kB instruction and data L1 caches, and a unified 2-MB L2 cache. We evaluate different scenarios, utilizing both 3DS-HNCC and 2D-CC at different hierarchy levels, on a set of SPEC 2000 benchmarks. Our simulations indicate that for the considered applications, despite of their increased write access time, 3DS-HNCC L2 caches inflict insignificant IPC penalty while providing, on average, 38% energy savings, when compared with 2D-CC. For L1 instruction caches the IPC penalty is also almost insignificant, while for L1 data caches IPC decreases between 1% to 12% were measured.","PeriodicalId":6519,"journal":{"name":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"62 1","pages":"151-156"},"PeriodicalIF":0.0,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89208801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Sub-crosspoint RRAM decoding for improved area efficiency 亚交叉点RRAM解码,提高区域效率
2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) Pub Date : 2014-07-08 DOI: 10.1145/2770287.2770312
Ravi Patel, E. Friedman
{"title":"Sub-crosspoint RRAM decoding for improved area efficiency","authors":"Ravi Patel, E. Friedman","doi":"10.1145/2770287.2770312","DOIUrl":"https://doi.org/10.1145/2770287.2770312","url":null,"abstract":"Two sub-crosspoint physical topologies are proposed that places the decode circuitry beneath the metal-oxide RRAM crosspoint array. The first topology integrates only the row decode circuitry, while the second integrates both the row and column decoder. The topology for sub-crosspoint row decoding reduces area by up to 38.6% over the standard peripheral approach, with an improvement in area efficiency of 21.6% for small arrays. Sub-crosspoint row and column decoding reduces the RRAM crosspoint area by 27.1% and improves area efficiency to nearly 100%.","PeriodicalId":6519,"journal":{"name":"2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"8 1","pages":"98-103"},"PeriodicalIF":0.0,"publicationDate":"2014-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75110454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信