Zhuhuan Yu, Xiong Yang, Xiaohui Wang, Xuliang Liu, Wei Du, Zi Yang
{"title":"Effects of Bi Doping on Zn-Rich Phase Evolution and Physical and Chemical Properties of Sn-6.5Zn Lead-Free Solder Alloy","authors":"Zhuhuan Yu, Xiong Yang, Xiaohui Wang, Xuliang Liu, Wei Du, Zi Yang","doi":"10.1007/s11665-024-09848-y","DOIUrl":"https://doi.org/10.1007/s11665-024-09848-y","url":null,"abstract":"<p>In the domain of electronic packaging, the application of Sn-Zn-based solders is recognized for its low melting point and satisfactory wettability. However, the reliability of solder alloy is compromised by the presence of the Zn-rich phase. This study focuses on the effect of Bi doping on the microstructure evolution of Zn-rich phase, thermal properties, wettability, oxidation resistance, and corrosion resistance of Sn-6.5Zn solder alloy. Compared to Sn-6.5Zn solder alloy without Bi, the introduction of Bi led to the trend where the size of the Zn-rich phase initially decreased and then increased, with the minimum size reaching 2.4 µm at the Bi concentration of 3.0 wt.%. Beyond the Bi addition of 3.0 wt.%, the small white dot-like Bi particles precipitating from the β-Sn matrix were observed. These particulate Bi phases tended to cluster around the Zn-rich phase, eventually forming lamellar structures. The incorporation of Bi served to lower the eutectic temperature, yet it widened the melting range. This phenomenon is attributed to the inherent low melting point of Bi; its presence extended the eutectic reaction temperature range and broadened the melting region. At the Bi content of 3.0 wt.%, the alloy demonstrated superior wettability and corrosion resistance, with corrosion products being small spherical ZnO, which is mainly attributed to the presence of finer Zn-rich phase in the alloy. When the Bi content was limited to 1.0 wt.%, the alloy showed the preferable oxidation resistance, possibly due to the Bi being dissolved in the Sn matrix after addition, leading to smaller Zn-rich phase size and finer β-Sn phase. These results indicate that the addition of an appropriate amount of Bi has a certain improvement on the physical and chemical properties of Sn-6.5Zn solder alloy, further enhancing the theoretical research of Sn-Zn-based solders, which may have an important impact on their electronic applications.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"74 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of Cladding Fe-Based Coating on the Microstructure, Wear Resistance, and Dynamic Performance of CL60 Steel","authors":"Xu Zhang, Tianyu Guan, Dongming Li, Xiangcheng Cui, Bingzhi Chen","doi":"10.1007/s11665-024-10006-7","DOIUrl":"https://doi.org/10.1007/s11665-024-10006-7","url":null,"abstract":"<p>The increasing speed of high-speed trains has aggravated wheel wear, posing a major threat to the safety of vehicle operation. In this study, CL60 steel was coated with Fe-based alloy powder by the laser cladding method. The microstructure and wear resistance of the coating were investigated. In addition, the dynamic properties of the wheelset model before and after cladding were also analyzed. The results showed that the best cladding effect was achieved at laser power of 700 W. The wear resistance and micro-hardness of the specimen were significantly improved by cladding. The dynamic performance of both coated and uncoated wheelset models meets the requirements of GB5599-2019. However, the coated wheelset model showed better dynamic performance than the uncoated wheelset model.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"2019 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Precipitate Structure, Microstructure Evolution Modeling and Characterization in an Aluminum Alloy 7050 Friction Stir Weld","authors":"Ralph Bush, Ioan Feier, David Diercks","doi":"10.1007/s11665-024-10039-y","DOIUrl":"https://doi.org/10.1007/s11665-024-10039-y","url":null,"abstract":"<p>Novel use of differential scanning calorimetry (DSC), with 1.7 mm specimen spacing intervals across a friction stir weld, coupled with microhardness, electrical conductivity, transmission electron microscopy (TEM), and novel three-dimensional thermal modeling of temperature profiles were used to characterize precipitate structure as a function of position across a friction stir welded and post-weld stabilized aluminum alloy 7050. The results show excellent agreement with predictions of existing FSW microstructural evolution models for 7XXX aluminum alloys. The DSC scans and thermal modeling accurately predicted the locations and peak temperatures at which transitions from 1) slow precipitate dissolution to 2) rapid dissolution, coarsening, and transformation of <i>η</i>′ to <i>η</i> precipitates to 3) increasing <i>η</i> dissolution and matrix supersaturation occur along the weld. These results are correlated to significant changes in the microhardness and electrical conductivity profiles. Following a 12-year period after the initial post-weld stabilization treatment, the closely spaced DSC scans were able to show that the initial stabilization treatment, (a standard T6 heat treatment), had not fully stabilized the weld near the heat affected zone (HAZ) hardness minimum. A 2-step stabilization method is proposed to fully stabilize the material in this region of the weld.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"28 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fang Liu, Qi Wang, Wandong Yang, Jing Feng, Yiyou Tu
{"title":"Simultaneous Improvement of the Mechanical and Corrosion Properties of a 3102 Aluminum Alloy via Ti Addition","authors":"Fang Liu, Qi Wang, Wandong Yang, Jing Feng, Yiyou Tu","doi":"10.1007/s11665-024-10041-4","DOIUrl":"https://doi.org/10.1007/s11665-024-10041-4","url":null,"abstract":"<p>The present study investigates the effects of titanium (Ti) addition on the microstructure, mechanical properties, and corrosion resistance of a 3102 aluminum alloy (Al-0.4Mn-0.3Fe-0.05Si, wt.%; the modified alloy is denoted as 3102-Mod aluminum alloy) through electron backscatter diffraction, x-ray photoelectron spectroscopy, and electrochemical tests. Results demonstrate that the introduction of 0.2-wt.% Ti led to considerable grain refinement, reducing the average grain size from 42 to 19 μm and improving the overall mechanical properties of the 3102 alloy. Notably, the corrosion resistance of the alloy was remarkably enhanced. In particular, the corrosion current density and corrosion rate of the 3102-Mod alloy were lower than those of the 3102 alloy. Furthermore, a Nyquist plot revealed a higher corrosion resistance of the 3102-Mod alloy. This improvement in corrosion resistance can be primarily attributed to the formation of a considerably compact passivation film owing to Ti microalloying. Overall, the findings indicate that Ti microalloying is a new strategy for enhancing the corrosion resistance of 3xxx aluminum alloys, thus expanding their application scope in automotive heat exchangers.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"23 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rahul Prasad, N. Purushotham, G. V. Preetham Kumar, P. Suresh Babu, G. Sivakumar, B. Rajasekaran
{"title":"The Effect of Detonation Frequency on the Linear Reciprocating Wear Behavior of Detonation Sprayed Ni-20%Cr Coatings at Elevated Temperatures","authors":"Rahul Prasad, N. Purushotham, G. V. Preetham Kumar, P. Suresh Babu, G. Sivakumar, B. Rajasekaran","doi":"10.1007/s11665-024-10043-2","DOIUrl":"https://doi.org/10.1007/s11665-024-10043-2","url":null,"abstract":"<p>The study explores the impact of detonation frequency (3 and 6 Hz) on the temperature-dependent linear reciprocating wear behavior of Ni-20%Cr coatings deposited by detonation spraying on a nickel-based superalloy (IN718). Dry sliding experiments were carried out at both ambient (25 °C) and high (420 °C) temperatures, using an alumina (Al<sub>2</sub>O<sub>3</sub>) ball as the counter material and different loads (5, 10, and 20 N). HV<sub>0.2</sub> microhardness indentations were used to test material hardness variations attributed to heat exposure. X-ray diffraction (XRD), Raman spectroscopy, and field emission scanning electron microscopy with energy-dispersive spectroscopy (FESEM with EDS) were used to investigate the wear characteristics and mechanisms. Furthermore, surface roughness and profiles of worn surfaces (including track depth, breadth, and wear volume) enabled the calculation of wear rates using confocal optical 3D profilometry. The results showed the 6 Hz Ni-20%Cr coating showed better wear resistance than the 3 Hz coating. However, a higher wear rate and low friction coefficient at 420 °C were observed due to partial oxide particles, which were insufficient to restrict direct ball-to-metal contact. The research delves into wear maps, tribolayer formation, wear mechanisms, and sub-mechanisms.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"8 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianguo Cheng, Chaoqun Xia, Bo Yang, Xiaojun Jiang, Hua Zhong, Tianshuo Song, Shuguang Liu, Tai Yang, Qiang Li
{"title":"High-Temperature Oxidation, Corrosion, and Wear Resistance of Cr‐xAl Laser Coated on Metal Zr Surface","authors":"Jianguo Cheng, Chaoqun Xia, Bo Yang, Xiaojun Jiang, Hua Zhong, Tianshuo Song, Shuguang Liu, Tai Yang, Qiang Li","doi":"10.1007/s11665-024-09982-7","DOIUrl":"https://doi.org/10.1007/s11665-024-09982-7","url":null,"abstract":"<p>Zr alloy with laser-melted Cr coatings exhibits excellent resistance to high-temperature oxidation and are widely used in the nuclear industry. To examine the impact of adding Al on the high-temperature oxidation performance, corrosion, and wear resistance of the coatings, Cr-<i>x</i>Al coatings with varying Al contents were applied to the pure Zr surface using laser cladding. Research results show that laser cladding coatings reveal good interdiffusion between the coatings and the substrate. The hardness and thickness of the coatings increase with the increase in Al content, but the quality of the coatings decreases with the increase of Al elements. A comparison of the high-temperature oxidation weight gain curve and morphology of different samples at 800–1100 °C shows that the oxidation weight gain of Cr-<i>x</i>Al coatings is about half of that of the uncoated substrate, exhibiting excellent high-temperature oxidation resistance. Conclusions drawn from friction morphology and volume loss indicate that the wear volume of Cr and Cr<sub>90</sub>Al<sub>10</sub> coatings is approximately 1/5 of the substrate, demonstrating significantly improved wear resistance compared to the substrate.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"7 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessment of Mechanical and Tribological Properties of SiC- and Multi-walled Carbon Nanotube-Reinforced Surface Composites of AA7075-T6 Fabricated via Friction Stir Processing","authors":"Amit Kumar, Vineet Kumar","doi":"10.1007/s11665-024-10057-w","DOIUrl":"https://doi.org/10.1007/s11665-024-10057-w","url":null,"abstract":"<p>Friction stir processing (FSP) is an energy-efficient technique that modifies surfaces and has been used to generate surface metal matrix composites (SMMCs). The AA7075-T6-based two different composites were fabricated in this study by reinforcing multi-walled carbon nanotubes, i.e., SMMC1 and silicon carbide, i.e., SMMC2, through FSP. The matrix material, i.e., AA7075 alloy, is widely used in aerospace and automotive industries due to its good strength/weight ratio. Three-pass FSP with tool speeds of 730 rpm and 65 mm/min was used to develop SMMCs with 7% volume of the reinforcement particles (RPs). Uniform dispersion of the RPs was confirmed through electron probe microanalysis. To investigate the microstructure of the composites and base material, electron backscatter diffraction was employed. To compare the effect of RPs, the SMMCs were examined for mechanical properties, i.e., microhardness, Charpy impact, and tensile strength, and tribological properties. Further, the wear tracks were analyzed for wear mechanism using scanning electron microscopy, and energy-dispersive x-ray analysis revealed the main particles on the tracks. Fractography of the Charpy and tensile specimens provided fracture mechanism. Both the composites outperformed the base metal in terms of mechanical properties and resistance to wear. Regarding the measured attributes, SMMC1 was better than SMMC2 with tensile strength of 629 MPa, impact energy of 25 J, hardness of 160 HV and wear weight loss of 10.2 mg.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"38 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silvia Reschka, Gregory Gerstein, Sebastian Herbst, Alexander Epishin, Hans Jürgen Maier
{"title":"Influence of High Current Impulses on Element Distribution in Creep-Deformed Single-Crystal Ni-Based Superalloys","authors":"Silvia Reschka, Gregory Gerstein, Sebastian Herbst, Alexander Epishin, Hans Jürgen Maier","doi":"10.1007/s11665-024-10054-z","DOIUrl":"10.1007/s11665-024-10054-z","url":null,"abstract":"<div><p>Nickel-based superalloys are typically employed for high-temperature applications. One well-known degradation mechanism is the rafting of the <i>γ</i>′-phase. In this study, it was investigated, whether a high current impulse treatment is suitable to induce changes in element distribution that are opposite to those observed during the rafting process. Thus, samples of CMSX-4 were treated with high current impulses up to 4 kA/mm<sup>2</sup>. Energy-dispersive x-ray spectroscopy measurements showed changes in element distribution due to these treatments. The changes in element distribution were observed to become more pronounced with increasing current density and partly counteracted those induced by prior creep. The extent of the compositional changes also depends on the element. Variations in the Al and Ta content showed stronger tendencies than, e.g., Cr, Co and W.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 22","pages":"12593 - 12603"},"PeriodicalIF":2.2,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11665-024-10054-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xianghui Li, Haiting Shen, Yang Liu, Yonggang Wang, Zhaoxiu Jiang
{"title":"Investigation of Compressive Mechanical Properties and Microstructure Evolution of 93W-4.9Ni-2.1Fe Heavy Alloy under a Wide Range of Strain Rates","authors":"Xianghui Li, Haiting Shen, Yang Liu, Yonggang Wang, Zhaoxiu Jiang","doi":"10.1007/s11665-024-09969-4","DOIUrl":"https://doi.org/10.1007/s11665-024-09969-4","url":null,"abstract":"<p>The compressive mechanical properties of the 93W-4.9Ni-2.1Fe heavy alloy were investigated across a wide range of strain rates (1.0 × 10<sup>−3</sup>-5.0 × 10<sup>3</sup>/s) using a mechanical test system (MTS810) and a Split Hopkinson Pressure Bar. The microstructure of the axial cross section of the specimens was subsequently analyzed using scanning electron microscopy, energy-dispersive X-ray spectrometry, and electron backscatter diffraction. The results revealed that under dynamic loading, the yield strength of the 93W-4.9Ni-2.1Fe heavy alloy showed increased strain rate sensitivity compared to quasi-static conditions. With increasing strain rate, the circle equivalent diameter of tungsten grains in the alloy continued to decrease, indicating a growing dominance in bearing the load and contributing to the deformation resistance. However, the work hardening capacity was reduced due to thermal softening effects under dynamic loading. Interface debonding between the tungsten grains and the matrix was observed after loading, and cracks initiated from weaker regions within the matrix, subsequently growing and intersecting. This study provides a theoretical basis for a comprehensive understanding of the high strain rate sensitivity and microstructural evolution of the 93W-4.9Ni-2.1Fe heavy alloy across a broad range of strain rates.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimizing Advanced High-Strength Steel Welds: The Role of Regional Pre-heating in the Heat-Affected Zone","authors":"Kemal Aydin, Nizamettin Kahraman","doi":"10.1007/s11665-024-10038-z","DOIUrl":"https://doi.org/10.1007/s11665-024-10038-z","url":null,"abstract":"<p>The development of next-generation high-strength steels is crucial for the automotive industry, necessitating advanced joining techniques. This study investigates the joining of STRENX 700 CR and DP 800 steels using resistance spot welding (RSW) with specialized fixtures. Unlike conventional methods, a regional pre-heating treatment was applied exclusively to the heat-affected zone (HAZ) prior to welding. Comparative analyses were performed between pre-heated and non-pre-heated welded joints. The welded joints underwent microstructural analysis, as well as non-destructive and destructive testing. Results revealed that pre-heating led to an expansion of the HAZ and a reduction in hardness. Additionally, there were significant improvements in mechanical properties, including increases in tensile-shear strength, cross-tension strength, and fatigue strength. These findings demonstrate the effectiveness of regional pre-heating in optimizing the mechanical performance of RSW joints, offering valuable insights for the automotive industry's welding applications.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"7 1","pages":""},"PeriodicalIF":2.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}