基于人工神经网络和多目标遗传算法的碳纤维增强尼龙复合材料力学性能创新优化

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Akash Ahlawat, Ashish Phogat, Upender Punia, Ashish Chhikara, Ashwani Kumar Dhingra, Ramesh Kumar Garg, Ravinder Kumar Sahdev, Deepak Chhabra
{"title":"基于人工神经网络和多目标遗传算法的碳纤维增强尼龙复合材料力学性能创新优化","authors":"Akash Ahlawat,&nbsp;Ashish Phogat,&nbsp;Upender Punia,&nbsp;Ashish Chhikara,&nbsp;Ashwani Kumar Dhingra,&nbsp;Ramesh Kumar Garg,&nbsp;Ravinder Kumar Sahdev,&nbsp;Deepak Chhabra","doi":"10.1007/s11665-025-10973-5","DOIUrl":null,"url":null,"abstract":"<div><p>This research paper extensively investigates the mechanical performance and optimization for composite materials of carbon fiber-reinforced nylon (CF-nylon). All specimens are fabricated by utilizing an FFF 3D printer, with model 2040 industrial X from Delta Wasp company. Important mechanical tests, including tensile testing, compression testing, wear resistance assessment, and Izod impact testing, are conducted to evaluate the composite's strength, stiffness, wear resistance, and toughness. The minimum wear rate is 0.033939394 mm<sup>3</sup> m<sup>−1</sup>, and the maximum strengths for tensile, compression, and impact resistance of 40 MPa, 50 MPa, and 35.82 J m<sup>−1</sup> were, respectively, achieved with significant process parameters as per the experimental design matrix. The data derived from the experimental tests were utilized to train and validate an artificial neural network (ANN) model. The performance of CF-nylon is further optimized using multi-objective optimization using genetic algorithm (MOGA). The highest tensile strength, highest compression strength, lowest wear rate, and the highest impact resistance of 42.91 MPa, 51.51 MPa, 0.016275777 mm<sup>3</sup> m<sup>−1</sup>, and 37.55 J m<sup>−1</sup> have been achieved at 0.1811 mm layer height, 87% infill density, and in the x orientation, as per the hybrid heuristic tool.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"34 20","pages":"23031 - 23044"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Optimization of Mechanical Performance in Carbon Fiber-Reinforced Nylon Composite Using Artificial Neural Networks and Multi-Objective Genetic Algorithms\",\"authors\":\"Akash Ahlawat,&nbsp;Ashish Phogat,&nbsp;Upender Punia,&nbsp;Ashish Chhikara,&nbsp;Ashwani Kumar Dhingra,&nbsp;Ramesh Kumar Garg,&nbsp;Ravinder Kumar Sahdev,&nbsp;Deepak Chhabra\",\"doi\":\"10.1007/s11665-025-10973-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research paper extensively investigates the mechanical performance and optimization for composite materials of carbon fiber-reinforced nylon (CF-nylon). All specimens are fabricated by utilizing an FFF 3D printer, with model 2040 industrial X from Delta Wasp company. Important mechanical tests, including tensile testing, compression testing, wear resistance assessment, and Izod impact testing, are conducted to evaluate the composite's strength, stiffness, wear resistance, and toughness. The minimum wear rate is 0.033939394 mm<sup>3</sup> m<sup>−1</sup>, and the maximum strengths for tensile, compression, and impact resistance of 40 MPa, 50 MPa, and 35.82 J m<sup>−1</sup> were, respectively, achieved with significant process parameters as per the experimental design matrix. The data derived from the experimental tests were utilized to train and validate an artificial neural network (ANN) model. The performance of CF-nylon is further optimized using multi-objective optimization using genetic algorithm (MOGA). The highest tensile strength, highest compression strength, lowest wear rate, and the highest impact resistance of 42.91 MPa, 51.51 MPa, 0.016275777 mm<sup>3</sup> m<sup>−1</sup>, and 37.55 J m<sup>−1</sup> have been achieved at 0.1811 mm layer height, 87% infill density, and in the x orientation, as per the hybrid heuristic tool.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"34 20\",\"pages\":\"23031 - 23044\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11665-025-10973-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-025-10973-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文对碳纤维增强尼龙(CF-nylon)复合材料的力学性能及其优化进行了广泛的研究。所有标本都是利用FFF 3D打印机制造的,Delta Wasp公司的2040型工业X。进行重要的机械测试,包括拉伸测试、压缩测试、耐磨性评估和Izod冲击测试,以评估复合材料的强度、刚度、耐磨性和韧性。根据实验设计矩阵,在工艺参数显著的情况下,最小磨损率为0.033939394 mm3 m−1,最大抗拉强度为40 MPa,最大抗压强度为50 MPa,最大抗冲击强度为35.82 J m−1。利用实验测试得到的数据来训练和验证人工神经网络(ANN)模型。采用遗传算法(MOGA)进行多目标优化,进一步优化了CF-nylon的性能。在0.1811 mm的层高、87%的填充密度和x方向上,获得了最高的抗拉强度、最高的抗压强度、最低的磨损率和最高的抗冲击性,分别为42.91 MPa、51.51 MPa、0.016275777 mm3 m−1和37.55 J m−1。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovative Optimization of Mechanical Performance in Carbon Fiber-Reinforced Nylon Composite Using Artificial Neural Networks and Multi-Objective Genetic Algorithms

This research paper extensively investigates the mechanical performance and optimization for composite materials of carbon fiber-reinforced nylon (CF-nylon). All specimens are fabricated by utilizing an FFF 3D printer, with model 2040 industrial X from Delta Wasp company. Important mechanical tests, including tensile testing, compression testing, wear resistance assessment, and Izod impact testing, are conducted to evaluate the composite's strength, stiffness, wear resistance, and toughness. The minimum wear rate is 0.033939394 mm3 m−1, and the maximum strengths for tensile, compression, and impact resistance of 40 MPa, 50 MPa, and 35.82 J m−1 were, respectively, achieved with significant process parameters as per the experimental design matrix. The data derived from the experimental tests were utilized to train and validate an artificial neural network (ANN) model. The performance of CF-nylon is further optimized using multi-objective optimization using genetic algorithm (MOGA). The highest tensile strength, highest compression strength, lowest wear rate, and the highest impact resistance of 42.91 MPa, 51.51 MPa, 0.016275777 mm3 m−1, and 37.55 J m−1 have been achieved at 0.1811 mm layer height, 87% infill density, and in the x orientation, as per the hybrid heuristic tool.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Engineering and Performance
Journal of Materials Engineering and Performance 工程技术-材料科学:综合
CiteScore
3.90
自引率
13.00%
发文量
1120
审稿时长
4.9 months
期刊介绍: ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance. The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication. Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信