Microstructure Evolution of 7055-T76 Aluminum Alloy in the Coupled Thermal-Mechanical Severe Plastic Deformation Process of Friction Stir Welding: Grains, Texture, and Precipitates
IF 2.2 4区 材料科学Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wu Xiaoyan, Jiang Haitao, Zhao Ruijie, Sun Chunxiao
{"title":"Microstructure Evolution of 7055-T76 Aluminum Alloy in the Coupled Thermal-Mechanical Severe Plastic Deformation Process of Friction Stir Welding: Grains, Texture, and Precipitates","authors":"Wu Xiaoyan, Jiang Haitao, Zhao Ruijie, Sun Chunxiao","doi":"10.1007/s11665-025-10971-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the microstructure evolution of 7055-T76 aluminum alloy in the coupled thermal-mechanical severe plastic deformation process of friction stir welding was investigated. Significant differences in the grain size, texture, and precipitates among different zones in FSWed joint were determined by the complex coupled thermal-mechanical effect. The base material (BM) was mainly composed of deformation grain and Brass and S texture with a sizeable <i>η</i> phase. The growth, partial recrystallization, and fully recrystallization of grains occurred in heat affected zone (HAZ), thermo-mechanical affected zone (TMAZ) and nugget zone (NZ), respectively. The growth, re-dissolution, and re-precipitation of nano-precipitates occurred in HAZ and NZ, respectively. It was found that superior synthetic microstructure characteristics were obtained in NZ. The NZ of FSWed joint was composed of refined recrystallized equiaxed grains about 1.4 μm and textures of Goss {110} < 001 > , R {124} < 211 > , and P {011} < 112 > with the weakest intensity. The precipitates were fully re-dissolved, and little <i>η</i>′ precipitates re-precipitated in NZ under deformation and high-temperature interaction. In addition, many high-angle grain boundaries existed in the BM and NZ.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"34 7","pages":"5856 - 5867"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-025-10971-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the microstructure evolution of 7055-T76 aluminum alloy in the coupled thermal-mechanical severe plastic deformation process of friction stir welding was investigated. Significant differences in the grain size, texture, and precipitates among different zones in FSWed joint were determined by the complex coupled thermal-mechanical effect. The base material (BM) was mainly composed of deformation grain and Brass and S texture with a sizeable η phase. The growth, partial recrystallization, and fully recrystallization of grains occurred in heat affected zone (HAZ), thermo-mechanical affected zone (TMAZ) and nugget zone (NZ), respectively. The growth, re-dissolution, and re-precipitation of nano-precipitates occurred in HAZ and NZ, respectively. It was found that superior synthetic microstructure characteristics were obtained in NZ. The NZ of FSWed joint was composed of refined recrystallized equiaxed grains about 1.4 μm and textures of Goss {110} < 001 > , R {124} < 211 > , and P {011} < 112 > with the weakest intensity. The precipitates were fully re-dissolved, and little η′ precipitates re-precipitated in NZ under deformation and high-temperature interaction. In addition, many high-angle grain boundaries existed in the BM and NZ.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered