2013 IEEE International Conference on Computer Vision最新文献

筛选
英文 中文
From Semi-supervised to Transfer Counting of Crowds 从半监督到人群转移计数
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.270
Chen Change Loy, S. Gong, T. Xiang
{"title":"From Semi-supervised to Transfer Counting of Crowds","authors":"Chen Change Loy, S. Gong, T. Xiang","doi":"10.1109/ICCV.2013.270","DOIUrl":"https://doi.org/10.1109/ICCV.2013.270","url":null,"abstract":"Regression-based techniques have shown promising results for people counting in crowded scenes. However, most existing techniques require expensive and laborious data annotation for model training. In this study, we propose to address this problem from three perspectives: (1) Instead of exhaustively annotating every single frame, the most informative frames are selected for annotation automatically and actively. (2) Rather than learning from only labelled data, the abundant unlabelled data are exploited. (3) Labelled data from other scenes are employed to further alleviate the burden for data annotation. All three ideas are implemented in a unified active and semi-supervised regression framework with ability to perform transfer learning, by exploiting the underlying geometric structure of crowd patterns via manifold analysis. Extensive experiments validate the effectiveness of our approach.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"1 1","pages":"2256-2263"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81721763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 142
Restoring an Image Taken through a Window Covered with Dirt or Rain 恢复通过被灰尘或雨水覆盖的窗户拍摄的图像
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.84
D. Eigen, Dilip Krishnan, R. Fergus
{"title":"Restoring an Image Taken through a Window Covered with Dirt or Rain","authors":"D. Eigen, Dilip Krishnan, R. Fergus","doi":"10.1109/ICCV.2013.84","DOIUrl":"https://doi.org/10.1109/ICCV.2013.84","url":null,"abstract":"Photographs taken through a window are often compromised by dirt or rain present on the window surface. Common cases of this include pictures taken from inside a vehicle, or outdoor security cameras mounted inside a protective enclosure. At capture time, defocus can be used to remove the artifacts, but this relies on achieving a shallow depth-of-field and placement of the camera close to the window. Instead, we present a post-capture image processing solution that can remove localized rain and dirt artifacts from a single image. We collect a dataset of clean/corrupted image pairs which are then used to train a specialized form of convolutional neural network. This learns how to map corrupted image patches to clean ones, implicitly capturing the characteristic appearance of dirt and water droplets in natural images. Our models demonstrate effective removal of dirt and rain in outdoor test conditions.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"36 1","pages":"633-640"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81785454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 405
Detecting Irregular Curvilinear Structures in Gray Scale and Color Imagery Using Multi-directional Oriented Flux 利用多向定向磁通检测灰度和彩色图像中的不规则曲线结构
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.196
Engin Türetken, C. Becker, Przemyslaw Glowacki, Fethallah Benmansour, P. Fua
{"title":"Detecting Irregular Curvilinear Structures in Gray Scale and Color Imagery Using Multi-directional Oriented Flux","authors":"Engin Türetken, C. Becker, Przemyslaw Glowacki, Fethallah Benmansour, P. Fua","doi":"10.1109/ICCV.2013.196","DOIUrl":"https://doi.org/10.1109/ICCV.2013.196","url":null,"abstract":"We propose a new approach to detecting irregular curvilinear structures in noisy image stacks. In contrast to earlier approaches that rely on circular models of the cross-sections, ours allows for the arbitrarily-shaped ones that are prevalent in biological imagery. This is achieved by maximizing the image gradient flux along multiple directions and radii, instead of only two with a unique radius as is usually done. This yields a more complex optimization problem for which we propose a computationally efficient solution. We demonstrate the effectiveness of our approach on a wide range of challenging gray scale and color datasets and show that it outperforms existing techniques, especially on very irregular structures.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"48 1","pages":"1553-1560"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82598900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 43
Manifold Based Face Synthesis from Sparse Samples 基于稀疏样本的流形人脸合成
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.275
Hongteng Xu, H. Zha
{"title":"Manifold Based Face Synthesis from Sparse Samples","authors":"Hongteng Xu, H. Zha","doi":"10.1109/ICCV.2013.275","DOIUrl":"https://doi.org/10.1109/ICCV.2013.275","url":null,"abstract":"Data sparsity has been a thorny issue for manifold-based image synthesis, and in this paper we address this critical problem by leveraging ideas from transfer learning. Specifically, we propose methods based on generating auxiliary data in the form of synthetic samples using transformations of the original sparse samples. To incorporate the auxiliary data, we propose a weighted data synthesis method, which adaptively selects from the generated samples for inclusion during the manifold learning process via a weighted iterative algorithm. To demonstrate the feasibility of the proposed method, we apply it to the problem of face image synthesis from sparse samples. Compared with existing methods, the proposed method shows encouraging results with good performance improvements.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"11 1","pages":"2208-2215"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84027165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Slice Sampling Particle Belief Propagation 切片采样粒子信念传播
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.144
Oliver Müller, M. Yang, B. Rosenhahn
{"title":"Slice Sampling Particle Belief Propagation","authors":"Oliver Müller, M. Yang, B. Rosenhahn","doi":"10.1109/ICCV.2013.144","DOIUrl":"https://doi.org/10.1109/ICCV.2013.144","url":null,"abstract":"Inference in continuous label Markov random fields is a challenging task. We use particle belief propagation (PBP) for solving the inference problem in continuous label space. Sampling particles from the belief distribution is typically done by using Metropolis-Hastings (MH) Markov chain Monte Carlo (MCMC) methods which involves sampling from a proposal distribution. This proposal distribution has to be carefully designed depending on the particular model and input data to achieve fast convergence. We propose to avoid dependence on a proposal distribution by introducing a slice sampling based PBP algorithm. The proposed approach shows superior convergence performance on an image denoising toy example. Our findings are validated on a challenging relational 2D feature tracking application.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"1 1","pages":"1129-1136"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90642623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Multi-view Normal Field Integration for 3D Reconstruction of Mirroring Objects 镜像对象三维重建的多视图法向场集成
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.311
Michael Weinmann, Aljosa Osep, R. Ruiters, R. Klein
{"title":"Multi-view Normal Field Integration for 3D Reconstruction of Mirroring Objects","authors":"Michael Weinmann, Aljosa Osep, R. Ruiters, R. Klein","doi":"10.1109/ICCV.2013.311","DOIUrl":"https://doi.org/10.1109/ICCV.2013.311","url":null,"abstract":"In this paper, we present a novel, robust multi-view normal field integration technique for reconstructing the full 3D shape of mirroring objects. We employ a turntable-based setup with several cameras and displays. These are used to display illumination patterns which are reflected by the object surface. The pattern information observed in the cameras enables the calculation of individual volumetric normal fields for each combination of camera, display and turntable angle. As the pattern information might be blurred depending on the surface curvature or due to non-perfect mirroring surface characteristics, we locally adapt the decoding to the finest still resolvable pattern resolution. In complex real-world scenarios, the normal fields contain regions without observations due to occlusions and outliers due to interreflections and noise. Therefore, a robust reconstruction using only normal information is challenging. Via a non-parametric clustering of normal hypotheses derived for each point in the scene, we obtain both the most likely local surface normal and a local surface consistency estimate. This information is utilized in an iterative min-cut based variational approach to reconstruct the surface geometry.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"9 1","pages":"2504-2511"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89518611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 35
Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition 低秩矩阵分解的统一核范数与双线性分解方法
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.309
R. Cabral, F. D. L. Torre, J. Costeira, Alexandre Bernardino
{"title":"Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition","authors":"R. Cabral, F. D. L. Torre, J. Costeira, Alexandre Bernardino","doi":"10.1109/ICCV.2013.309","DOIUrl":"https://doi.org/10.1109/ICCV.2013.309","url":null,"abstract":"Low rank models have been widely used for the representation of shape, appearance or motion in computer vision problems. Traditional approaches to fit low rank models make use of an explicit bilinear factorization. These approaches benefit from fast numerical methods for optimization and easy kernelization. However, they suffer from serious local minima problems depending on the loss function and the amount/type of missing data. Recently, these low-rank models have alternatively been formulated as convex problems using the nuclear norm regularizer, unlike factorization methods, their numerical solvers are slow and it is unclear how to kernelize them or to impose a rank a priori. This paper proposes a unified approach to bilinear factorization and nuclear norm regularization, that inherits the benefits of both. We analyze the conditions under which these approaches are equivalent. Moreover, based on this analysis, we propose a new optimization algorithm and a \"rank continuation'' strategy that outperform state-of-the-art approaches for Robust PCA, Structure from Motion and Photometric Stereo with outliers and missing data.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"9 1","pages":"2488-2495"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89812993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 181
Saliency Detection via Absorbing Markov Chain 吸收马尔可夫链的显著性检测
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.209
Bowen Jiang, L. Zhang, Huchuan Lu, Chuan Yang, Ming-Hsuan Yang
{"title":"Saliency Detection via Absorbing Markov Chain","authors":"Bowen Jiang, L. Zhang, Huchuan Lu, Chuan Yang, Ming-Hsuan Yang","doi":"10.1109/ICCV.2013.209","DOIUrl":"https://doi.org/10.1109/ICCV.2013.209","url":null,"abstract":"In this paper, we formulate saliency detection via absorbing Markov chain on an image graph model. We jointly consider the appearance divergence and spatial distribution of salient objects and the background. The virtual boundary nodes are chosen as the absorbing nodes in a Markov chain and the absorbed time from each transient node to boundary absorbing nodes is computed. The absorbed time of transient node measures its global similarity with all absorbing nodes, and thus salient objects can be consistently separated from the background when the absorbed time is used as a metric. Since the time from transient node to absorbing nodes relies on the weights on the path and their spatial distance, the background region on the center of image may be salient. We further exploit the equilibrium distribution in an ergodic Markov chain to reduce the absorbed time in the long-range smooth background regions. Extensive experiments on four benchmark datasets demonstrate robustness and efficiency of the proposed method against the state-of-the-art methods.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"999 1","pages":"1665-1672"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89981262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 585
Learning Slow Features for Behaviour Analysis 学习行为分析的慢特性
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.353
Lazaros Zafeiriou, M. Nicolaou, S. Zafeiriou, Symeon Nikitidis, M. Pantic
{"title":"Learning Slow Features for Behaviour Analysis","authors":"Lazaros Zafeiriou, M. Nicolaou, S. Zafeiriou, Symeon Nikitidis, M. Pantic","doi":"10.1109/ICCV.2013.353","DOIUrl":"https://doi.org/10.1109/ICCV.2013.353","url":null,"abstract":"A recently introduced latent feature learning technique for time varying dynamic phenomena analysis is the so called Slow Feature Analysis (SFA). SFA is a deterministic component analysis technique for multi-dimensional sequences that by minimizing the variance of the first order time derivative approximation of the input signal finds uncorrelated projections that extract slowly-varying features ordered by their temporal consistency and constancy. In this paper, we propose a number of extensions in both the deterministic and the probabilistic SFA optimization frameworks. In particular, we derive a novel deterministic SFA algorithm that is able to identify linear projections that extract the common slowest varying features of two or more sequences. In addition, we propose an Expectation Maximization (EM) algorithm to perform inference in a probabilistic formulation of SFA and similarly extend it in order to handle two and more time varying data sequences. Moreover, we demonstrate that the probabilistic SFA (EMSFA) algorithm that discovers the common slowest varying latent space of multiple sequences can be combined with dynamic time warping techniques for robust sequence time alignment. The proposed SFA algorithms were applied for facial behavior analysis demonstrating their usefulness and appropriateness for this task.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"21 1","pages":"2840-2847"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86581464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 23
A Convex Optimization Framework for Active Learning 主动学习的凸优化框架
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.33
Ehsan Elhamifar, G. Sapiro, A. Yang, S. Shankar Sasrty
{"title":"A Convex Optimization Framework for Active Learning","authors":"Ehsan Elhamifar, G. Sapiro, A. Yang, S. Shankar Sasrty","doi":"10.1109/ICCV.2013.33","DOIUrl":"https://doi.org/10.1109/ICCV.2013.33","url":null,"abstract":"In many image/video/web classification problems, we have access to a large number of unlabeled samples. However, it is typically expensive and time consuming to obtain labels for the samples. Active learning is the problem of progressively selecting and annotating the most informative unlabeled samples, in order to obtain a high classification performance. Most existing active learning algorithms select only one sample at a time prior to retraining the classifier. Hence, they are computationally expensive and cannot take advantage of parallel labeling systems such as Mechanical Turk. On the other hand, algorithms that allow the selection of multiple samples prior to retraining the classifier, may select samples that have significant information overlap or they involve solving a non-convex optimization. More importantly, the majority of active learning algorithms are developed for a certain classifier type such as SVM. In this paper, we develop an efficient active learning framework based on convex programming, which can select multiple samples at a time for annotation. Unlike the state of the art, our algorithm can be used in conjunction with any type of classifiers, including those of the family of the recently proposed Sparse Representation-based Classification (SRC). We use the two principles of classifier uncertainty and sample diversity in order to guide the optimization program towards selecting the most informative unlabeled samples, which have the least information overlap. Our method can incorporate the data distribution in the selection process by using the appropriate dissimilarity between pairs of samples. We show the effectiveness of our framework in person detection, scene categorization and face recognition on real-world datasets.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"3 1","pages":"209-216"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87810141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 116
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信