Engin Türetken, C. Becker, Przemyslaw Glowacki, Fethallah Benmansour, P. Fua
{"title":"Detecting Irregular Curvilinear Structures in Gray Scale and Color Imagery Using Multi-directional Oriented Flux","authors":"Engin Türetken, C. Becker, Przemyslaw Glowacki, Fethallah Benmansour, P. Fua","doi":"10.1109/ICCV.2013.196","DOIUrl":null,"url":null,"abstract":"We propose a new approach to detecting irregular curvilinear structures in noisy image stacks. In contrast to earlier approaches that rely on circular models of the cross-sections, ours allows for the arbitrarily-shaped ones that are prevalent in biological imagery. This is achieved by maximizing the image gradient flux along multiple directions and radii, instead of only two with a unique radius as is usually done. This yields a more complex optimization problem for which we propose a computationally efficient solution. We demonstrate the effectiveness of our approach on a wide range of challenging gray scale and color datasets and show that it outperforms existing techniques, especially on very irregular structures.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"48 1","pages":"1553-1560"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
We propose a new approach to detecting irregular curvilinear structures in noisy image stacks. In contrast to earlier approaches that rely on circular models of the cross-sections, ours allows for the arbitrarily-shaped ones that are prevalent in biological imagery. This is achieved by maximizing the image gradient flux along multiple directions and radii, instead of only two with a unique radius as is usually done. This yields a more complex optimization problem for which we propose a computationally efficient solution. We demonstrate the effectiveness of our approach on a wide range of challenging gray scale and color datasets and show that it outperforms existing techniques, especially on very irregular structures.