From Semi-supervised to Transfer Counting of Crowds

Chen Change Loy, S. Gong, T. Xiang
{"title":"From Semi-supervised to Transfer Counting of Crowds","authors":"Chen Change Loy, S. Gong, T. Xiang","doi":"10.1109/ICCV.2013.270","DOIUrl":null,"url":null,"abstract":"Regression-based techniques have shown promising results for people counting in crowded scenes. However, most existing techniques require expensive and laborious data annotation for model training. In this study, we propose to address this problem from three perspectives: (1) Instead of exhaustively annotating every single frame, the most informative frames are selected for annotation automatically and actively. (2) Rather than learning from only labelled data, the abundant unlabelled data are exploited. (3) Labelled data from other scenes are employed to further alleviate the burden for data annotation. All three ideas are implemented in a unified active and semi-supervised regression framework with ability to perform transfer learning, by exploiting the underlying geometric structure of crowd patterns via manifold analysis. Extensive experiments validate the effectiveness of our approach.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"1 1","pages":"2256-2263"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 142

Abstract

Regression-based techniques have shown promising results for people counting in crowded scenes. However, most existing techniques require expensive and laborious data annotation for model training. In this study, we propose to address this problem from three perspectives: (1) Instead of exhaustively annotating every single frame, the most informative frames are selected for annotation automatically and actively. (2) Rather than learning from only labelled data, the abundant unlabelled data are exploited. (3) Labelled data from other scenes are employed to further alleviate the burden for data annotation. All three ideas are implemented in a unified active and semi-supervised regression framework with ability to perform transfer learning, by exploiting the underlying geometric structure of crowd patterns via manifold analysis. Extensive experiments validate the effectiveness of our approach.
从半监督到人群转移计数
基于回归的技术已经显示出在拥挤场景中计数的良好结果。然而,大多数现有技术需要昂贵且费力的数据注释来进行模型训练。在本研究中,我们建议从三个方面来解决这一问题:(1)不是对每一帧都进行详尽的注释,而是自动地、主动地选择信息量最大的帧进行注释。(2)利用大量的未标记数据,而不是仅仅从标记数据中学习。(3)利用其他场景的标注数据,进一步减轻数据标注的负担。所有这三个想法都是在一个统一的主动和半监督回归框架中实现的,该框架具有执行迁移学习的能力,通过流形分析利用群体模式的潜在几何结构。大量的实验验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信