2013 IEEE International Conference on Computer Vision最新文献

筛选
英文 中文
Estimating the 3D Layout of Indoor Scenes and Its Clutter from Depth Sensors 基于深度传感器的室内场景三维布局及其杂波估计
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.161
Jian Zhang, Chen Kan, A. Schwing, R. Urtasun
{"title":"Estimating the 3D Layout of Indoor Scenes and Its Clutter from Depth Sensors","authors":"Jian Zhang, Chen Kan, A. Schwing, R. Urtasun","doi":"10.1109/ICCV.2013.161","DOIUrl":"https://doi.org/10.1109/ICCV.2013.161","url":null,"abstract":"In this paper we propose an approach to jointly estimate the layout of rooms as well as the clutter present in the scene using RGB-D data. Towards this goal, we propose an effective model that is able to exploit both depth and appearance features, which are complementary. Furthermore, our approach is efficient as we exploit the inherent decomposition of additive potentials. We demonstrate the effectiveness of our approach on the challenging NYU v2 dataset and show that employing depth reduces the layout error by 6% and the clutter estimation by 13%.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"126 1","pages":"1273-1280"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87839448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 78
Multiview Photometric Stereo Using Planar Mesh Parameterization 基于平面网格参数化的多视点测光立体
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.148
Jaesik Park, Sudipta N. Sinha, Y. Matsushita, Yu-Wing Tai, In-So Kweon
{"title":"Multiview Photometric Stereo Using Planar Mesh Parameterization","authors":"Jaesik Park, Sudipta N. Sinha, Y. Matsushita, Yu-Wing Tai, In-So Kweon","doi":"10.1109/ICCV.2013.148","DOIUrl":"https://doi.org/10.1109/ICCV.2013.148","url":null,"abstract":"We propose a method for accurate 3D shape reconstruction using uncalibrated multiview photometric stereo. A coarse mesh reconstructed using multiview stereo is first parameterized using a planar mesh parameterization technique. Subsequently, multiview photometric stereo is performed in the 2D parameter domain of the mesh, where all geometric and photometric cues from multiple images can be treated uniformly. Unlike traditional methods, there is no need for merging view-dependent surface normal maps. Our key contribution is a new photometric stereo based mesh refinement technique that can efficiently reconstruct meshes with extremely fine geometric details by directly estimating a displacement texture map in the 2D parameter domain. We demonstrate that intricate surface geometry can be reconstructed using several challenging datasets containing surfaces with specular reflections, multiple albedos and complex topologies.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"28 1","pages":"1161-1168"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87972034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 49
Illuminant Chromaticity from Image Sequences 来自图像序列的光源色度
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.412
V. Prinet, Dani Lischinski, M. Werman
{"title":"Illuminant Chromaticity from Image Sequences","authors":"V. Prinet, Dani Lischinski, M. Werman","doi":"10.1109/ICCV.2013.412","DOIUrl":"https://doi.org/10.1109/ICCV.2013.412","url":null,"abstract":"We estimate illuminant chromaticity from temporal sequences, for scenes illuminated by either one or two dominant illuminants. While there are many methods for illuminant estimation from a single image, few works so far have focused on videos, and even fewer on multiple light sources. Our aim is to leverage information provided by the temporal acquisition, where either the objects or the camera or the light source are/is in motion in order to estimate illuminant color without the need for user interaction or using strong assumptions and heuristics. We introduce a simple physically-based formulation based on the assumption that the incident light chromaticity is constant over a short space-time domain. We show that a deterministic approach is not sufficient for accurate and robust estimation: however, a probabilistic formulation makes it possible to implicitly integrate away hidden factors that have been ignored by the physical model. Experimental results are reported on a dataset of natural video sequences and on the Gray Ball benchmark, indicating that we compare favorably with the state-of-the-art.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"57 1","pages":"3320-3327"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88008600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
Refractive Structure-from-Motion on Underwater Images 水下图像的运动折射结构
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.14
Anne Jordt, R. Koch
{"title":"Refractive Structure-from-Motion on Underwater Images","authors":"Anne Jordt, R. Koch","doi":"10.1109/ICCV.2013.14","DOIUrl":"https://doi.org/10.1109/ICCV.2013.14","url":null,"abstract":"In underwater environments, cameras need to be confined in an underwater housing, viewing the scene through a piece of glass. In case of flat port underwater housings, light rays entering the camera housing are refracted twice, due to different medium densities of water, glass, and air. This causes the usually linear rays of light to bend and the commonly used pinhole camera model to be invalid. When using the pinhole camera model without explicitly modeling refraction in Structure-from-Motion (SfM) methods, a systematic model error occurs. Therefore, in this paper, we propose a system for computing camera path and 3D points with explicit incorporation of refraction using new methods for pose estimation. Additionally, a new error function is introduced for non-linear optimization, especially bundle adjustment. The proposed method allows to increase reconstruction accuracy and is evaluated in a set of experiments, where the proposed method's performance is compared to SfM with the perspective camera model.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"20 1","pages":"57-64"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85810510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 70
Measuring Flow Complexity in Videos 测量视频流的复杂性
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.140
Saad Ali
{"title":"Measuring Flow Complexity in Videos","authors":"Saad Ali","doi":"10.1109/ICCV.2013.140","DOIUrl":"https://doi.org/10.1109/ICCV.2013.140","url":null,"abstract":"In this paper a notion of flow complexity that measures the amount of interaction among objects is introduced and an approach to compute it directly from a video sequence is proposed. The approach employs particle trajectories as the input representation of motion and maps it into a `braid' based representation. The mapping is based on the observation that 2D trajectories of particles take the form of a braid in space-time due to the intermingling among particles over time. As a result of this mapping, the problem of estimating the flow complexity from particle trajectories becomes the problem of estimating braid complexity, which in turn can be computed by measuring the topological entropy of a braid. For this purpose recently developed mathematical tools from braid theory are employed which allow rapid computation of topological entropy of braids. The approach is evaluated on a dataset consisting of open source videos depicting variations in terms of types of moving objects, scene layout, camera view angle, motion patterns, and object densities. The results show that the proposed approach is able to quantify the complexity of the flow, and at the same time provides useful insights about the sources of the complexity.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"20 1","pages":"1097-1104"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86866640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Semantically-Based Human Scanpath Estimation with HMMs 基于语义的hmm人体扫描路径估计
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.401
Huiying Liu, Dong Xu, Qingming Huang, Wen Li, Min Xu, Stephen Lin
{"title":"Semantically-Based Human Scanpath Estimation with HMMs","authors":"Huiying Liu, Dong Xu, Qingming Huang, Wen Li, Min Xu, Stephen Lin","doi":"10.1109/ICCV.2013.401","DOIUrl":"https://doi.org/10.1109/ICCV.2013.401","url":null,"abstract":"We present a method for estimating human scan paths, which are sequences of gaze shifts that follow visual attention over an image. In this work, scan paths are modeled based on three principal factors that influence human attention, namely low-level feature saliency, spatial position, and semantic content. Low-level feature saliency is formulated as transition probabilities between different image regions based on feature differences. The effect of spatial position on gaze shifts is modeled as a Levy flight with the shifts following a 2D Cauchy distribution. To account for semantic content, we propose to use a Hidden Markov Model (HMM) with a Bag-of-Visual-Words descriptor of image regions. An HMM is well-suited for this purpose in that 1) the hidden states, obtained by unsupervised learning, can represent latent semantic concepts, 2) the prior distribution of the hidden states describes visual attraction to the semantic concepts, and 3) the transition probabilities represent human gaze shift patterns. The proposed method is applied to task-driven viewing processes. Experiments and analysis performed on human eye gaze data verify the effectiveness of this method.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"2010 1","pages":"3232-3239"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86296753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 39
Space-Time Tradeoffs in Photo Sequencing 照片排序中的时空权衡
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.125
Tali Basha, Y. Moses, S. Avidan
{"title":"Space-Time Tradeoffs in Photo Sequencing","authors":"Tali Basha, Y. Moses, S. Avidan","doi":"10.1109/ICCV.2013.125","DOIUrl":"https://doi.org/10.1109/ICCV.2013.125","url":null,"abstract":"Photo-sequencing is the problem of recovering the temporal order of a set of still images of a dynamic event, taken asynchronously by a set of uncalibrated cameras. Solving this problem is a first, crucial step for analyzing (or visualizing) the dynamic content of the scene captured by a large number of freely moving spectators. We propose a geometric based solution, followed by rank aggregation to the photo-sequencing problem. Our algorithm trades spatial certainty for temporal certainty. Whereas the previous solution proposed by [4] relies on two images taken from the same static camera to eliminate uncertainty in space, we drop the static-camera assumption and replace it with temporal information available from images taken from the same (moving) camera. Our method thus overcomes the limitation of the static-camera assumption, and scales much better with the duration of the event and the spread of cameras in space. We present successful results on challenging real data sets and large scale synthetic data (250 images).","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"1 1","pages":"977-984"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88290096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Locally Affine Sparse-to-Dense Matching for Motion and Occlusion Estimation 局部仿射稀疏到密集匹配的运动和遮挡估计
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.216
Marius Leordeanu, Andrei Zanfir, C. Sminchisescu
{"title":"Locally Affine Sparse-to-Dense Matching for Motion and Occlusion Estimation","authors":"Marius Leordeanu, Andrei Zanfir, C. Sminchisescu","doi":"10.1109/ICCV.2013.216","DOIUrl":"https://doi.org/10.1109/ICCV.2013.216","url":null,"abstract":"Estimating a dense correspondence field between successive video frames, under large displacement, is important in many visual learning and recognition tasks. We propose a novel sparse-to-dense matching method for motion field estimation and occlusion detection. As an alternative to the current coarse-to-fine approaches from the optical flow literature, we start from the higher level of sparse matching with rich appearance and geometric constraints collected over extended neighborhoods, using an occlusion aware, locally affine model. Then, we move towards the simpler, but denser classic flow field model, with an interpolation procedure that offers a natural transition between the sparse and the dense correspondence fields. We experimentally demonstrate that our appearance features and our complex geometric constraints permit the correct motion estimation even in difficult cases of large displacements and significant appearance changes. We also propose a novel classification method for occlusion detection that works in conjunction with the sparse-to-dense matching model. We validate our approach on the newly released Sintel dataset and obtain state-of-the-art results.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"54 1","pages":"1721-1728"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80058196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 74
Modeling the Calibration Pipeline of the Lytro Camera for High Quality Light-Field Image Reconstruction Lytro相机高质量光场图像重建标定管道建模
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.407
Donghyeon Cho, Minhaeng Lee, Sunyeong Kim, Yu-Wing Tai
{"title":"Modeling the Calibration Pipeline of the Lytro Camera for High Quality Light-Field Image Reconstruction","authors":"Donghyeon Cho, Minhaeng Lee, Sunyeong Kim, Yu-Wing Tai","doi":"10.1109/ICCV.2013.407","DOIUrl":"https://doi.org/10.1109/ICCV.2013.407","url":null,"abstract":"Light-field imaging systems have got much attention recently as the next generation camera model. A light-field imaging system consists of three parts: data acquisition, manipulation, and application. Given an acquisition system, it is important to understand how a light-field camera converts from its raw image to its resulting refocused image. In this paper, using the Lytro camera as an example, we describe step-by-step procedures to calibrate a raw light-field image. In particular, we are interested in knowing the spatial and angular coordinates of the micro lens array and the resampling process for image reconstruction. Since Lytro uses a hexagonal arrangement of a micro lens image, additional treatments in calibration are required. After calibration, we analyze and compare the performances of several resampling methods for image reconstruction with and without calibration. Finally, a learning based interpolation method is proposed which demonstrates a higher quality image reconstruction than previous interpolation methods including a method used in Lytro software.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"32 1","pages":"3280-3287"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75867683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 145
Finding Causal Interactions in Video Sequences 寻找视频序列中的因果关系
2013 IEEE International Conference on Computer Vision Pub Date : 2013-12-01 DOI: 10.1109/ICCV.2013.444
Mustafa Ayazoglu, Burak Yılmaz, M. Sznaier, O. Camps
{"title":"Finding Causal Interactions in Video Sequences","authors":"Mustafa Ayazoglu, Burak Yılmaz, M. Sznaier, O. Camps","doi":"10.1109/ICCV.2013.444","DOIUrl":"https://doi.org/10.1109/ICCV.2013.444","url":null,"abstract":"This paper considers the problem of detecting causal interactions in video clips. Specifically, the goal is to detect whether the actions of a given target can be explained in terms of the past actions of a collection of other agents. We propose to solve this problem by recasting it into a directed graph topology identification, where each node corresponds to the observed motion of a given target, and each link indicates the presence of a causal correlation. As shown in the paper, this leads to a block-sparsification problem that can be efficiently solved using a modified Group-Lasso type approach, capable of handling missing data and outliers (due for instance to occlusion and mis-identified correspondences). Moreover, this approach also identifies time instants where the interactions between agents change, thus providing event detection capabilities. These results are illustrated with several examples involving non-trivial interactions amongst several human subjects.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"92 1","pages":"3575-3582"},"PeriodicalIF":0.0,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79563712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信