寻找视频序列中的因果关系

Mustafa Ayazoglu, Burak Yılmaz, M. Sznaier, O. Camps
{"title":"寻找视频序列中的因果关系","authors":"Mustafa Ayazoglu, Burak Yılmaz, M. Sznaier, O. Camps","doi":"10.1109/ICCV.2013.444","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of detecting causal interactions in video clips. Specifically, the goal is to detect whether the actions of a given target can be explained in terms of the past actions of a collection of other agents. We propose to solve this problem by recasting it into a directed graph topology identification, where each node corresponds to the observed motion of a given target, and each link indicates the presence of a causal correlation. As shown in the paper, this leads to a block-sparsification problem that can be efficiently solved using a modified Group-Lasso type approach, capable of handling missing data and outliers (due for instance to occlusion and mis-identified correspondences). Moreover, this approach also identifies time instants where the interactions between agents change, thus providing event detection capabilities. These results are illustrated with several examples involving non-trivial interactions amongst several human subjects.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"92 1","pages":"3575-3582"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Finding Causal Interactions in Video Sequences\",\"authors\":\"Mustafa Ayazoglu, Burak Yılmaz, M. Sznaier, O. Camps\",\"doi\":\"10.1109/ICCV.2013.444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of detecting causal interactions in video clips. Specifically, the goal is to detect whether the actions of a given target can be explained in terms of the past actions of a collection of other agents. We propose to solve this problem by recasting it into a directed graph topology identification, where each node corresponds to the observed motion of a given target, and each link indicates the presence of a causal correlation. As shown in the paper, this leads to a block-sparsification problem that can be efficiently solved using a modified Group-Lasso type approach, capable of handling missing data and outliers (due for instance to occlusion and mis-identified correspondences). Moreover, this approach also identifies time instants where the interactions between agents change, thus providing event detection capabilities. These results are illustrated with several examples involving non-trivial interactions amongst several human subjects.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"92 1\",\"pages\":\"3575-3582\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文研究了视频片段中因果交互的检测问题。具体来说,目标是检测给定目标的动作是否可以用其他代理集合的过去动作来解释。我们建议通过将其重新转换为有向图拓扑识别来解决这个问题,其中每个节点对应于给定目标的观察运动,每个链接表明存在因果关系。如本文所示,这会导致块稀疏化问题,可以使用改进的Group-Lasso类型方法有效地解决,该方法能够处理丢失的数据和异常值(例如由于遮挡和错误识别的对应)。此外,这种方法还可以识别代理之间的交互发生变化的时间瞬间,从而提供事件检测功能。这些结果用几个例子来说明,这些例子涉及几个人类受试者之间的非平凡的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding Causal Interactions in Video Sequences
This paper considers the problem of detecting causal interactions in video clips. Specifically, the goal is to detect whether the actions of a given target can be explained in terms of the past actions of a collection of other agents. We propose to solve this problem by recasting it into a directed graph topology identification, where each node corresponds to the observed motion of a given target, and each link indicates the presence of a causal correlation. As shown in the paper, this leads to a block-sparsification problem that can be efficiently solved using a modified Group-Lasso type approach, capable of handling missing data and outliers (due for instance to occlusion and mis-identified correspondences). Moreover, this approach also identifies time instants where the interactions between agents change, thus providing event detection capabilities. These results are illustrated with several examples involving non-trivial interactions amongst several human subjects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信