Estimating the 3D Layout of Indoor Scenes and Its Clutter from Depth Sensors

Jian Zhang, Chen Kan, A. Schwing, R. Urtasun
{"title":"Estimating the 3D Layout of Indoor Scenes and Its Clutter from Depth Sensors","authors":"Jian Zhang, Chen Kan, A. Schwing, R. Urtasun","doi":"10.1109/ICCV.2013.161","DOIUrl":null,"url":null,"abstract":"In this paper we propose an approach to jointly estimate the layout of rooms as well as the clutter present in the scene using RGB-D data. Towards this goal, we propose an effective model that is able to exploit both depth and appearance features, which are complementary. Furthermore, our approach is efficient as we exploit the inherent decomposition of additive potentials. We demonstrate the effectiveness of our approach on the challenging NYU v2 dataset and show that employing depth reduces the layout error by 6% and the clutter estimation by 13%.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"126 1","pages":"1273-1280"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

Abstract

In this paper we propose an approach to jointly estimate the layout of rooms as well as the clutter present in the scene using RGB-D data. Towards this goal, we propose an effective model that is able to exploit both depth and appearance features, which are complementary. Furthermore, our approach is efficient as we exploit the inherent decomposition of additive potentials. We demonstrate the effectiveness of our approach on the challenging NYU v2 dataset and show that employing depth reduces the layout error by 6% and the clutter estimation by 13%.
基于深度传感器的室内场景三维布局及其杂波估计
在本文中,我们提出了一种利用RGB-D数据联合估计房间布局以及场景中存在的杂波的方法。为了实现这一目标,我们提出了一个有效的模型,能够利用深度和外观特征,这是互补的。此外,我们的方法是有效的,因为我们利用了加性势的固有分解。我们在具有挑战性的NYU v2数据集上证明了我们的方法的有效性,并表明使用深度将布局误差降低了6%,杂波估计降低了13%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信