基于稀疏样本的流形人脸合成

Hongteng Xu, H. Zha
{"title":"基于稀疏样本的流形人脸合成","authors":"Hongteng Xu, H. Zha","doi":"10.1109/ICCV.2013.275","DOIUrl":null,"url":null,"abstract":"Data sparsity has been a thorny issue for manifold-based image synthesis, and in this paper we address this critical problem by leveraging ideas from transfer learning. Specifically, we propose methods based on generating auxiliary data in the form of synthetic samples using transformations of the original sparse samples. To incorporate the auxiliary data, we propose a weighted data synthesis method, which adaptively selects from the generated samples for inclusion during the manifold learning process via a weighted iterative algorithm. To demonstrate the feasibility of the proposed method, we apply it to the problem of face image synthesis from sparse samples. Compared with existing methods, the proposed method shows encouraging results with good performance improvements.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"11 1","pages":"2208-2215"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Manifold Based Face Synthesis from Sparse Samples\",\"authors\":\"Hongteng Xu, H. Zha\",\"doi\":\"10.1109/ICCV.2013.275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data sparsity has been a thorny issue for manifold-based image synthesis, and in this paper we address this critical problem by leveraging ideas from transfer learning. Specifically, we propose methods based on generating auxiliary data in the form of synthetic samples using transformations of the original sparse samples. To incorporate the auxiliary data, we propose a weighted data synthesis method, which adaptively selects from the generated samples for inclusion during the manifold learning process via a weighted iterative algorithm. To demonstrate the feasibility of the proposed method, we apply it to the problem of face image synthesis from sparse samples. Compared with existing methods, the proposed method shows encouraging results with good performance improvements.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"11 1\",\"pages\":\"2208-2215\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

对于基于流形的图像合成来说,数据稀疏性一直是一个棘手的问题,在本文中,我们通过利用迁移学习的思想来解决这个关键问题。具体来说,我们提出了基于原始稀疏样本变换生成合成样本形式的辅助数据的方法。为了整合辅助数据,我们提出了一种加权数据合成方法,该方法通过加权迭代算法自适应地从生成的样本中选择包含在流形学习过程中的样本。为了证明该方法的可行性,我们将其应用于基于稀疏样本的人脸图像合成问题。与现有方法相比,该方法取得了令人鼓舞的效果,性能得到了较好的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Manifold Based Face Synthesis from Sparse Samples
Data sparsity has been a thorny issue for manifold-based image synthesis, and in this paper we address this critical problem by leveraging ideas from transfer learning. Specifically, we propose methods based on generating auxiliary data in the form of synthetic samples using transformations of the original sparse samples. To incorporate the auxiliary data, we propose a weighted data synthesis method, which adaptively selects from the generated samples for inclusion during the manifold learning process via a weighted iterative algorithm. To demonstrate the feasibility of the proposed method, we apply it to the problem of face image synthesis from sparse samples. Compared with existing methods, the proposed method shows encouraging results with good performance improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信