{"title":"Universal Dependences of Frictional Interaction Parameters during Elastic Wheel–Road Contact","authors":"E. V. Balakina","doi":"10.3103/S1068366623020022","DOIUrl":"10.3103/S1068366623020022","url":null,"abstract":"<p>The questions of frictional interaction during the contact of a vehicle’s elastic wheel and a flat solid support surface under different loading conditions by force and moment are considered. The parameters of this interaction are investigated: the adhesion coefficient; its components by areas with static and sliding friction; static friction use coefficient; static friction proportionality coefficient; and relative coefficient of limiting realized static friction. Mathematical dependences in the form of smooth continuous functions are proposed for physically correct calculation of the specified parameters. Two options for loading an elastic wheel with a force and a moment are considered. It is shown that the adhesion coefficient for a given longitudinal wheel slip depends on the loading conditions: the lateral force along the wheel rotation axis and the moment in the rotation plane, as well as their sequence of occurrence. With the same values of force and moment, the adhesion coefficient can change at different sequences of their occurrence: up to 70% for high lateral forces (near to weight) and up to 12% for small lateral forces (up to 20% of weight). Three methods for calculating the adhesion coefficient in the contact of an elastic wheel with a flat solid support surface are proposed. When calculating the proposed characteristics of the methods, averaged zero diagrams were used in the absence of lateral wheel force for different elastic wheels and different types and conditions of road surfaces. To obtain them, the procedure of approximation of numerous experimental data of different researchers was carried out. The developed methods are valid for all elastic wheels and all types and conditions of solid supporting surfaces. The results of the work can be used with sufficient accuracy for practical calculations in the design modeling of the properties of stability, controllability, and braking dynamics of wheeled vehicles.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"44 2","pages":"77 - 85"},"PeriodicalIF":0.7,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4561949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Chernets, S. Shil’ko, A. Kornienko, M. Pashechko
{"title":"Triboanalysis of Antifrictional Materials Based on Polyamides for Metal-Polymer Sliding Bearings","authors":"M. Chernets, S. Shil’ko, A. Kornienko, M. Pashechko","doi":"10.3103/S1068366623020034","DOIUrl":"10.3103/S1068366623020034","url":null,"abstract":"<p>An experimental and theoretical method of triboanalysis is proposed to characterize the antifriction properties of polyamides and composites based on them, used in self-lubricated metal-polymer sliding bearings. The indicators of wear resistance of the materials are determined experimentally. The generalized parameters of the mathematical model of wear used in the design of metal-polymer bearings are calculated. The dependences (diagrams) of wear resistance of unfilled polyamides PA6, PA66, and polyamide composites PA6 + 30GF, PA6 + 30CF, PA6 + MoS<sub>2</sub>, and PA6 + oil paired with steel 45 on specific friction force are obtained and a comparative assessment of the wear resistance is given. The influence of contact pressure on the friction coefficient is studied and a significant decrease in the latter with increasing contact pressure is shown. A decrease in the Vickers hardness and elastic modulus of the surface layer of the studied materials during wear is also established. It is more significant for unfilled polyamide PA66 (by 1.66 times), PA6 + 30CF (by 1.5 times), PA6 + MoS<sub>2</sub> (by 1.41 times), and less noticeable for polymer composites PA6 + 30GF and PA6 + oil by 1.21 and 1.09 times, respectively. The fact should be taken into account in tribological calculations of metal-polymer sliding bearings. The research results are presented in the form of diagrams, which allow one to compare the wear resistance of the investigative materials in a wide range of specific friction forces. Thus, the practical significance of the results lies in the possibility of their use in tribological engineering to predict the service life of metal-polymer plain bearings and validate the choice of antifriction materials for their manufacturing.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"44 2","pages":"63 - 70"},"PeriodicalIF":0.7,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4564641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. A. Lebedev, M. M. Aliev, E. V. Fominov, A. V. Fomenko, A. A. Marchenko, A. E. Mironenko
{"title":"Thermoelectric Characteristics of the Process of Steel Turning by Carbide Inserts with Combined Coatings","authors":"V. A. Lebedev, M. M. Aliev, E. V. Fominov, A. V. Fomenko, A. A. Marchenko, A. E. Mironenko","doi":"10.3103/S1068366623020058","DOIUrl":"10.3103/S1068366623020058","url":null,"abstract":"<p>This work is dedicated to assessing the effect of TiN, ZrN, TiN + ZrN, (Ti–Zr)N, ZrN–(Ti–Zr)N–TiN nanostructured coatings, deposited on plates of hard alloy T15K6 by the PVD method, on tool wear and thermoelectric parameters of the process of turning work pieces from steels 45, 38HS, and 12H18N10T. The greatest decrease in temperature in the cutting zone was recorded during the processing of steels 45 and 38HS, characterized by high thermal conductivity coefficients, while the maximum effect was achieved due to TiN + ZrN and ZrN coatings, for low thermal conductivity steel 12H18N10T, the lowest temperature was provided by the ZrN, (Ti–Zr)N and ZrN + (Ti–Zr)N + TiN compositions. Analysis of the variable component of the thermo-EMF signal during cutting shows a decrease in the amplitude of oscillations for coatings that provide the greatest wear resistance of the tool. According to the results of the experiments, such an effect when turning steels 45 and 38HS at optimal speeds was demonstrated by ZrN + (Ti–Zr)N + TiN and TiN + ZrN coatings, and for stainless steel 12H18N10T, ZrN, ZrN + (Ti–Zr)N + TiN and TiN. The established relationship between the wear resistance of carbide inserts and the amplitude of fluctuations of the variable thermos-EMF component makes it possible to use it as an indirect criterion for selecting the optimal composition of the wear-resistant coating from the point of view of thermophysical compatibility with tool and machined materials.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"44 2","pages":"71 - 76"},"PeriodicalIF":0.7,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4564642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. A. Pinahin, S. K. Sharma, M. A. Yagmurov, S. S. Vrublevskaya, M. A. Shpack
{"title":"Correlation between Wear Resistance of High-Speed Steel R6M5 and Deformations Arising during Laser Hardening","authors":"I. A. Pinahin, S. K. Sharma, M. A. Yagmurov, S. S. Vrublevskaya, M. A. Shpack","doi":"10.3103/S1068366623020083","DOIUrl":"10.3103/S1068366623020083","url":null,"abstract":"<p>The research of deformation of samples made from high-speed steel R6M5 and treated by volumetric pulsed laser hardening (VPLH) under various laser exposure modes and measurement topology (laser radiation energy, distance from the irradiation site) were carried out using strain measurement. It was found that after VPLH treatment of the samples there are deformations in the longitudinal and transverse sections. This fact indicates the volumetric nature of the deformation changes in the material, and at the same time, it shows the pronounced extremum of relative deformations, which depends on the previously listed conditions of exposure and measurement. The results of abrasive wear tests showed the greatest effect of VPLH for the laser irradiation energy of 300 J and the distance from the irradiation site of 24 mm, which corresponds to the results obtained by the strain measurement for the determination of the samples’ relative deformations. The received extremum corresponds to the optimal hardening modes when changing the relative deformation by 1.06 times and increasing of the hardened resistance samples by 2.3 times. The possibility of joint use (convergence) of the tests results for abrasive wear was determined using the method of retrospective (a posteriori) randomization. This allows recommending the strain measurement method for the optimal modes of VPLH determination and can help to significantly reduce the cost of material consumption and labor intensity of laboratory tests, especially in the process of determining the modes for the samples with variable inputs (structure and chemical composition of materials, geometric parameters of products, operating modes, etc.)</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"44 2","pages":"102 - 107"},"PeriodicalIF":0.7,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4561959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
O. G. Devoino, E. E. Feldshtein, A. Y. Grigoriev, V. L. Basinyuk, M. A. Kardapolava, I. M. Kosiakova
{"title":"Tribotechnical Characteristics of Coatings Based on Bronze BRA7N6F after Melting by a Fiber Laser","authors":"O. G. Devoino, E. E. Feldshtein, A. Y. Grigoriev, V. L. Basinyuk, M. A. Kardapolava, I. M. Kosiakova","doi":"10.3103/S1068366623010038","DOIUrl":"10.3103/S1068366623010038","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>The tribotechnical characteristics of coatings based on bronze BrA7H6F after melting with a fiber laser have been studied. Changes of instant friction coefficient, temperature in the friction zone, and wear intensity depending on technology and conditions of coating deposition are considered. Research was carried out on an A-135 tribotester under the scheme of a roller–cradle under the conditions of concentrated contact and high loads. Analysis of wear character and friction surface topography was carried out by electronic microstamping methods. Laser melting provided increase in wear resistance of coatings by 1.5–2 times in comparison with plasma spraying; wear of rubbing surface of coatings increases by 1.3–5 times at an increase of force of loading by 2 times. It is shown that in cases of plasma spraying and laser melting with high energy density of the laser beam on the friction surface the sponge-capillary effect occurs. In conditions of low energy density, the mentioned effect disappears, and plastic flow and adhesive bonding of bronze with the counter-body material (hardened steel 45) is observed on the worn surface.</p></div></div>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"44 1","pages":"5 - 9"},"PeriodicalIF":0.7,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4860790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu. I. Osenin, D. S. Krivosheya, Yu. Yu. Osenin, A. V. Chesnokov
{"title":"Disc Brake Design with Carbon Friction Material","authors":"Yu. I. Osenin, D. S. Krivosheya, Yu. Yu. Osenin, A. V. Chesnokov","doi":"10.3103/S1068366623010087","DOIUrl":"10.3103/S1068366623010087","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>The article suggests a disc brake design with carbon friction materials (CFMs). The principle of the method is to create two friction units in the disc brake with materials placed in them that have different frictional properties. The two friction units are created by separating the brake disc with a thermally insulating screen. One friction unit (friction unit A) has CFMs installed having a low friction coefficient in the initial temperature mode and a high friction coefficient at a temperature of 300°C or higher. The other friction unit has a premium-class car block (CB) and a steel disk (35GS steel) the friction coefficient of which does not depend on temperature (friction unit B). The experiment conducted justifies the creation of a disc brake based on the described principle. The experiment was carried out on a testing bench that simulates the interaction of the disc brake as per the load-speed criteria. The testing bench creates conditions for a constructive separation of the brake disc into friction units A and B. As an example of two friction units: CFM–CFM (friction unit A) and CB–steel 35GS (friction unit B). The experimental performance of the friction coefficient versus temperature obtained on the testing bench in relation to friction units containing friction materials CFM–CFM and CB–steel 35GS showed that the friction coefficient of the disc brake takes high values in the entire range of temperatures tested during braking. The article offers a promising design of a disc brake with thermally insulated friction units. The design consists of two brake discs and a central part, which is thermally insulating. All parts are glued together.</p></div></div>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"44 1","pages":"13 - 17"},"PeriodicalIF":0.7,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4863235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mathematical Modeling of the Wear Rate of the Friction Pair of a Locomotive Wheel–Rail","authors":"M. G. Shalygin, A. P. Vashchishina","doi":"10.3103/S1068366623010117","DOIUrl":"10.3103/S1068366623010117","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>Using a regression model, the factors influencing the wear rate of the locomotive wheel crest are determined. It has been established that the main factors influencing the wear of the locomotive bandage ridge when the rolling stock enters the curved section of the track are diffusion-active hydrogen and the viscosity of the lubricant material with the additives used. The determining factors of the ridge wear are: <i>Р</i> is the pressure of the ridge on the rail (maximum) on the curved section of the track, <i>K</i><sub>s</sub> is impact strength of soft material (wheel tread), η is dynamic viscosity, τ is shear stress in grease, <i>L</i> is friction trail, <i>V</i> is volume of wear particles, and υ is wear rate. A mathematical model of the wear rate of the locomotive wheel crest in a curved section of the railway track is proposed. The proposed model makes it possible to evaluate the operational properties of the wheel–rail friction pair under study. The modification of the model was carried out based on the test results of the Puma lubricant. It is established that the wear rate of the comb with the Puma lubricant is 2.9703 × 10<sup>–6</sup> m/s. The intensity of the release of diffusionally active hydrogen during tests on the friction path was determined as the ratio of hydrogen release during wear and the friction path and is equal to 0.711 ppm/mm. A comparative analysis of the mathematical model and experimental studies on the wear of the wheel ridge using additives to the lubricant: organosulfate, organophosphorus, and a derivative of the hydroquinone compound, the discrepancy between the empirical and theoretical values of the wear rate is 0.67%. The use of the developed mathematical model allows us to evaluate the process of the wear rate of the locomotive wheel ridge and determine the wear of the ridge during operation, in the future it will allow us to calculate the wear in real conditions and predict the timing of the inter-repair run of the rolling stock.</p></div></div>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"44 1","pages":"18 - 22"},"PeriodicalIF":0.7,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4864630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. S. Lyadov, E. Yu. Oganesova, A. A. Kochubeev, O. P. Parenago
{"title":"New Type of Antiwear Additives Based on Quaternary Ammonium Salts of Dialkyldithiocarbamic Acids for Silicone Lubricants","authors":"A. S. Lyadov, E. Yu. Oganesova, A. A. Kochubeev, O. P. Parenago","doi":"10.3103/S1068366623010075","DOIUrl":"10.3103/S1068366623010075","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>A method is proposed for the preparation of antiwear additives based on quaternary ammonium salts of dialkyldithiocarbamic acids by non-catalytic interaction of stoichiometric amounts of the corresponding diamine, carbon disulfide, and tetraalkylammonium chloride in the presence of sodium hydroxide in which the interaction of the initial components is carried out in one stage. All synthesized additives are highly soluble in polyorganosilicone oils, and at a concentration of 0.5–1.0 wt % they exhibit antiwear activity, which is expressed in a significant decrease (in some cases more than twice) in the diameter of the wear scar when tested on a four-ball friction machine. It has been shown that an increase in the length of alkyl groups in the anionic part of the additives leads to a more effective antiwear effect, the same trend manifests itself with an increase in the number of carbon atoms of alkyl groups in ammonium salts. The influence of the concentration of additives on the antiwear properties of lubricating compositions has been studied. The proposed type of additive is a promising friction modifier for silicone lubricants.</p></div></div>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"44 1","pages":"10 - 12"},"PeriodicalIF":0.7,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4863881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. L. Chernyshov, V. I. Kolesnikov, V. D. Vereskun, I. V. Kolesnikov, D. S. Manturov, A. L. Ozyabkin
{"title":"Elastic-Dissipative Properties of Heavy-Loaded Modified Friction Pairs","authors":"S. L. Chernyshov, V. I. Kolesnikov, V. D. Vereskun, I. V. Kolesnikov, D. S. Manturov, A. L. Ozyabkin","doi":"10.3103/S1068366623010026","DOIUrl":"10.3103/S1068366623010026","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>Attempts to solve interrelated tasks by specifying materials for coatings and developing a methodology for monitoring the friction unit operation have been tried previously. The importance and originality of this study is that it examines the distribution of elements in the CrAlSiN coating, as well as their comparative physical, mechanical, and tribological properties. Besides, we have found that surface modification with a coating of the CrAlSiN system increases the strength and resistance to plastic deformation, which ensures high-quality deposition of thin vacuum ion-plasma coatings and leads to an increase in wear resistance. To control friction units with such coatings, it was decided to develop a monitoring technology using a dimensionless damping coefficient of friction-mechanical bonds in sub-octave band frequency ranges of forced vibrations. It makes it possible to identify natural vibration frequencies, which manifest the properties of the coatings and modifiers used for friction or anti-friction purposes. Our findings should make a significant contribution to tribology. Alongside observations of variations in the elastic-dissipative and inertial properties of the interaction between contact surfaces, the analysis of the generalized dynamic criteria on heavily loaded friction units that operate in the boundary lubrication mode allowed determining adhesion stability of contact friction bodies for friction subsystems. Furthermore, we have defined the effectiveness of lubricants, transition to boundary friction, and non-lubricated friction for antifriction subsystems. The use of the technologies developed by the authors for heavy-loaded tribosystems makes it possible to increase the wear resistance, reliability, and safety of operation of railway and air transport.</p></div></div>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"44 1","pages":"34 - 41"},"PeriodicalIF":0.7,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4868902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Functional Characteristics of Electric Contact Grease","authors":"D. M. Gutsev, F. A. Grigoriev, N. K. Myshkin","doi":"10.3103/S1068366623010051","DOIUrl":"10.3103/S1068366623010051","url":null,"abstract":"<div><div><h3>\u0000 <b>Abstract</b>—</h3><p>The article notes that the use of electric contact grease is one of the effective methods for improving the reliability of connections in electrical engineering, which is relevant due to the rapid development of electric transport and increasing requirements for the environmental friendliness of lubricants. Тhe production of grease, which, in addition to tribological efficiency, has electrically conductive properties in a tribosystem, can be achieved by providing a stable dispersed system with a high content of solid lubricants and electrically conductive components. The effect of introducing the electroconductive particles into the grease composition to provide electrically conductive properties was studied. Technological methods for obtaining the electric contact grease have been developed. It has been established that with an increase in the content of electroconductive filler in grease, the wear index and colloidal stability decrease with an increase in the dropping point and shear strength. The optimal content of the electroconductive filler was determined while maintaining the required tribological and physicomechanical characteristics of the electric contact grease. The prospects of using biodegradable oils as the basis for greases are noted.</p></div></div>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":"44 1","pages":"1 - 4"},"PeriodicalIF":0.7,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4868904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}