{"title":"Revealing of Factors of Increased Wear of Friction Carbon–Carbon Materials in Aircraft Taxi Brakes","authors":"V. V. Kulakov, A. K. Golubkov, L. N. Kirillova","doi":"10.3103/S1068366624700065","DOIUrl":null,"url":null,"abstract":"<p>The study compared properties of carbon–carbon composites for manufacturing aircraft brakes. Composites based on various graphitized and carbonized fibers, coal, tar pitch, and pyrocarbon matrices were considered. Friction tests were carried out on full-size brake discs (three-disk stand) and on model samples (UTM-2168 testing machine). A significant wear increase of composites based on a pyrocarbon matrix was found during taxi braking in the temperature range of 50–250°C. Wear of composites based on a coal tar pitch matrix did not depend on the temperature of the friction surface. It was found, that the “third body” of composites based on pyrocarbon has a coarse rough structure with distinct individual abrasive particles; its hardness is more than twice as high as the hardness of the third body of composites based on pitch matrix. The size distribution of pores for composites based on different matrices is given, the difference in the quantity and size of structural defects is illustrated. The variation in wear of materials during taxi braking is explained. The increase of degree of anisotropy of the pitch matrix, provided the decrease of wear of the material. The wear was measured during taxi braking of specimens with a hybrid matrix having a different ratio of coal tar pitch and pyrocarbon components. Carbon–carbon composites containing 45% or more of the pitch component in matrix have stable reduced wear during taxi braking, regardless of the reinforcement scheme. The possibility of reducing wear during taxi braking of composites on pyrocompacted matrices by modifying the matrix with pitch is shown.</p>","PeriodicalId":633,"journal":{"name":"Journal of Friction and Wear","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Friction and Wear","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S1068366624700065","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The study compared properties of carbon–carbon composites for manufacturing aircraft brakes. Composites based on various graphitized and carbonized fibers, coal, tar pitch, and pyrocarbon matrices were considered. Friction tests were carried out on full-size brake discs (three-disk stand) and on model samples (UTM-2168 testing machine). A significant wear increase of composites based on a pyrocarbon matrix was found during taxi braking in the temperature range of 50–250°C. Wear of composites based on a coal tar pitch matrix did not depend on the temperature of the friction surface. It was found, that the “third body” of composites based on pyrocarbon has a coarse rough structure with distinct individual abrasive particles; its hardness is more than twice as high as the hardness of the third body of composites based on pitch matrix. The size distribution of pores for composites based on different matrices is given, the difference in the quantity and size of structural defects is illustrated. The variation in wear of materials during taxi braking is explained. The increase of degree of anisotropy of the pitch matrix, provided the decrease of wear of the material. The wear was measured during taxi braking of specimens with a hybrid matrix having a different ratio of coal tar pitch and pyrocarbon components. Carbon–carbon composites containing 45% or more of the pitch component in matrix have stable reduced wear during taxi braking, regardless of the reinforcement scheme. The possibility of reducing wear during taxi braking of composites on pyrocompacted matrices by modifying the matrix with pitch is shown.
期刊介绍:
Journal of Friction and Wear is intended to bring together researchers and practitioners working in tribology. It provides novel information on science, practice, and technology of lubrication, wear prevention, and friction control. Papers cover tribological problems of physics, chemistry, materials science, and mechanical engineering, discussing issues from a fundamental or technological point of view.